21,342 research outputs found

    Dynamic Policies for Cooperative Networked Systems

    Full text link
    A set of economic entities embedded in a network graph collaborate by opportunistically exchanging their resources to satisfy their dynamically generated needs. Under what conditions their collaboration leads to a sustainable economy? Which online policy can ensure a feasible resource exchange point will be attained, and what information is needed to implement it? Furthermore, assuming there are different resources and the entities have diverse production capabilities, which production policy each entity should employ in order to maximize the economy's sustainability? Importantly, can we design such policies that are also incentive compatible even when there is no a priori information about the entities' needs? We introduce a dynamic production scheduling and resource exchange model to capture this fundamental problem and provide answers to the above questions. Applications range from infrastructure sharing, trade and organisation management, to social networks and sharing economy services.Comment: 6-page version appeared at ACM NetEcon' 1

    Weak Resilience of Networked Control Systems

    Full text link
    In this paper, we propose a method to establish a networked control system that maintains its stability in the presence of certain undesirable incidents on local controllers. We call such networked control systems weakly resilient. We first derive a necessary and sufficient condition for the weak resilience of networked systems. Networked systems do not generally satisfy this condition. Therefore, we provide a method for designing a compensator which ensures the weak resilience of the compensated system. Finally, we illustrate the efficiency of the proposed method by a power system example based on the IEEE 14-bus test system

    Topological resilience in non-normal networked systems

    Get PDF
    The network of interactions in complex systems, strongly influences their resilience, the system capability to resist to external perturbations or structural damages and to promptly recover thereafter. The phenomenon manifests itself in different domains, e.g. cascade failures in computer networks or parasitic species invasion in ecosystems. Understanding the networks topological features that affect the resilience phenomenon remains a challenging goal of the design of robust complex systems. We prove that the non-normality character of the network of interactions amplifies the response of the system to exogenous disturbances and can drastically change the global dynamics. We provide an illustrative application to ecology by proposing a mechanism to mute the Allee effect and eventually a new theory of patterns formation involving a single diffusing species

    Topological resilience in non-normal networked systems

    Get PDF
    The network of interactions in complex systems, strongly influences their resilience, the system capability to resist to external perturbations or structural damages and to promptly recover thereafter. The phenomenon manifests itself in different domains, e.g. cascade failures in computer networks or parasitic species invasion in ecosystems. Understanding the networks topological features that affect the resilience phenomenon remains a challenging goal of the design of robust complex systems. We prove that the non-normality character of the network of interactions amplifies the response of the system to exogenous disturbances and can drastically change the global dynamics. We provide an illustrative application to ecology by proposing a mechanism to mute the Allee effect and eventually a new theory of patterns formation involving a single diffusing species

    Strategic Investment in Protection in Networked Systems

    Get PDF
    We study the incentives that agents have to invest in costly protection against cascading failures in networked systems. Applications include vaccination, computer security and airport security. Agents are connected through a network and can fail either intrinsically or as a result of the failure of a subset of their neighbors. We characterize the equilibrium based on an agent's failure probability and derive conditions under which equilibrium strategies are monotone in degree (i.e. in how connected an agent is on the network). We show that different kinds of applications (e.g. vaccination, malware, airport/EU security) lead to very different equilibrium patterns of investments in protection, with important welfare and risk implications. Our equilibrium concept is flexible enough to allow for comparative statics in terms of network properties and we show that it is also robust to the introduction of global externalities (e.g. price feedback, congestion).Comment: 32 pages, 3 figure
    • …
    corecore