1,852,361 research outputs found

    Quantifying Social Network Dynamics

    Full text link
    The dynamic character of most social networks requires to model evolution of networks in order to enable complex analysis of theirs dynamics. The following paper focuses on the definition of differences between network snapshots by means of Graph Differential Tuple. These differences enable to calculate the diverse distance measures as well as to investigate the speed of changes. Four separate measures are suggested in the paper with experimental study on real social network data.Comment: In proceedings of the 4th International Conference on Computational Aspects of Social Networks, CASoN 201

    Endogenous Network Dynamics

    Get PDF
    In all social and economic interactions, individuals or coalitions choose not only with whom to interact but how to interact, and over time both the structure (the “with whom”) and the strategy (“the how”) of interactions change. Our objectives here are to model the structure and strategy of interactions prevailing at any point in time as a directed network and to address the following open question in the theory of social and economic network formation: given the rules of network and coalition formation, the preferences of individuals over networks, the strategic behavior of coalitions in forming networks, and the trembles of nature, what network and coalitional dynamics are likely to emerge and persist. Our main contributions are (i) to formulate the problem of network and coalition formation as a dynamic, stochastic game, (ii) to show that this game possesses a stationary correlated equilibrium (in network and coalition formation strategies), (iii) to show that, together with the trembles of nature, this stationary correlated equilibrium determines an equilibrium Markov process of network and coalition formation, and (iv) to show that this endogenous process possesses a finite, nonempty set of ergodic measures, and generates a finite, disjoint collection of nonempty subsets of networks and coalitions, each constituting a basin of attraction. We also extend to the setting of endogenous Markov dynamics the notions of pairwise stability (Jackson-Wolinsky, 1996), strong stability (Jacksonvan den Nouweland, 2005), and Nash stability (Bala-Goyal, 2000), and we show that in order for any network-coalition pair to persist and be stable (pairwise, strong, or Nash) it is necessary and sufficient that the pair reside in one of finitely many basins of attraction. The results we obtain here for endogenous network dynamics and stochastic basins of attraction are the dynamic analogs of our earlier results on endogenous network formation and strategic basins of attraction in static, abstract games of network formation (Page and Wooders, 2008), and build on the seminal contributions of Jackson and Watts (2002), Konishi and Ray (2003), and Dutta, Ghosal, and Ray (2005).Endogenous Network Dynamics, Dynamic Stochastic Games of Network Formation, Equilibrium Markov Process of Network Formation, Basins of Attraction, Harris Decomposition, Ergodic Probability Measures, Dynamic Path Dominance Core, Dynamic Pairwise Stability

    Network Inference from Consensus Dynamics

    Full text link
    We consider the problem of identifying the topology of a weighted, undirected network G\mathcal G from observing snapshots of multiple independent consensus dynamics. Specifically, we observe the opinion profiles of a group of agents for a set of MM independent topics and our goal is to recover the precise relationships between the agents, as specified by the unknown network G\mathcal G. In order to overcome the under-determinacy of the problem at hand, we leverage concepts from spectral graph theory and convex optimization to unveil the underlying network structure. More precisely, we formulate the network inference problem as a convex optimization that seeks to endow the network with certain desired properties -- such as sparsity -- while being consistent with the spectral information extracted from the observed opinions. This is complemented with theoretical results proving consistency as the number MM of topics grows large. We further illustrate our method by numerical experiments, which showcase the effectiveness of the technique in recovering synthetic and real-world networks.Comment: Will be presented at the 2017 IEEE Conference on Decision and Control (CDC
    corecore