1,589,609 research outputs found

    Compressing networks with super nodes

    Get PDF
    Community detection is a commonly used technique for identifying groups in a network based on similarities in connectivity patterns. To facilitate community detection in large networks, we recast the network to be partitioned into a smaller network of 'super nodes', each super node comprising one or more nodes in the original network. To define the seeds of our super nodes, we apply the 'CoreHD' ranking from dismantling and decycling. We test our approach through the analysis of two common methods for community detection: modularity maximization with the Louvain algorithm and maximum likelihood optimization for fitting a stochastic block model. Our results highlight that applying community detection to the compressed network of super nodes is significantly faster while successfully producing partitions that are more aligned with the local network connectivity, more stable across multiple (stochastic) runs within and between community detection algorithms, and overlap well with the results obtained using the full network

    Pseudo Mask Augmented Object Detection

    Full text link
    In this work, we present a novel and effective framework to facilitate object detection with the instance-level segmentation information that is only supervised by bounding box annotation. Starting from the joint object detection and instance segmentation network, we propose to recursively estimate the pseudo ground-truth object masks from the instance-level object segmentation network training, and then enhance the detection network with top-down segmentation feedbacks. The pseudo ground truth mask and network parameters are optimized alternatively to mutually benefit each other. To obtain the promising pseudo masks in each iteration, we embed a graphical inference that incorporates the low-level image appearance consistency and the bounding box annotations to refine the segmentation masks predicted by the segmentation network. Our approach progressively improves the object detection performance by incorporating the detailed pixel-wise information learned from the weakly-supervised segmentation network. Extensive evaluation on the detection task in PASCAL VOC 2007 and 2012 [12] verifies that the proposed approach is effective

    A machine learning approach with verification of predictions and assisted supervision for a rule-based network intrusion detection system

    Get PDF
    Network security is a branch of network management in which network intrusion detection systems provide attack detection features by monitorization of traffic data. Rule-based misuse detection systems use a set of rules or signatures to detect attacks that exploit a particular vulnerability. These rules have to be handcoded by experts to properly identify vulnerabilities, which results in misuse detection systems having limited extensibility. This paper proposes a machine learning layer on top of a rule-based misuse detection system that provides automatic generation of detection rules, prediction verification and assisted classification of new data. Our system offers an overall good performance, while adding an heuristic and adaptive approach to existing rule-based misuse detection systems

    Using the Pattern-of-Life in Networks to Improve the Effectiveness of Intrusion Detection Systems

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.As the complexity of cyber-attacks keeps increasing, new and more robust detection mechanisms need to be developed. The next generation of Intrusion Detection Systems (IDSs) should be able to adapt their detection characteristics based not only on the measureable network traffic, but also on the available high- level information related to the protected network to improve their detection results. We make use of the Pattern-of-Life (PoL) of a network as the main source of high-level information, which is correlated with the time of the day and the usage of the network resources. We propose the use of a Fuzzy Cognitive Map (FCM) to incorporate the PoL into the detection process. The main aim of this work is to evidence the improved the detection performance of an IDS using an FCM to leverage on network related contextual information. The results that we present verify that the proposed method improves the effectiveness of our IDS by reducing the total number of false alarms; providing an improvement of 9.68% when all the considered metrics are combined and a peak improvement of up to 35.64%, depending on particular metric combination

    A taxonomy of malicious traffic for intrusion detection systems

    Get PDF
    With the increasing number of network threats it is essential to have a knowledge of existing and new network threats to design better intrusion detection systems. In this paper we propose a taxonomy for classifying network attacks in a consistent way, allowing security researchers to focus their efforts on creating accurate intrusion detection systems and targeted datasets

    S4ND: Single-Shot Single-Scale Lung Nodule Detection

    Full text link
    The state of the art lung nodule detection studies rely on computationally expensive multi-stage frameworks to detect nodules from CT scans. To address this computational challenge and provide better performance, in this paper we propose S4ND, a new deep learning based method for lung nodule detection. Our approach uses a single feed forward pass of a single network for detection and provides better performance when compared to the current literature. The whole detection pipeline is designed as a single 3D3D Convolutional Neural Network (CNN) with dense connections, trained in an end-to-end manner. S4ND does not require any further post-processing or user guidance to refine detection results. Experimentally, we compared our network with the current state-of-the-art object detection network (SSD) in computer vision as well as the state-of-the-art published method for lung nodule detection (3D DCNN). We used publically available 888888 CT scans from LUNA challenge dataset and showed that the proposed method outperforms the current literature both in terms of efficiency and accuracy by achieving an average FROC-score of 0.8970.897. We also provide an in-depth analysis of our proposed network to shed light on the unclear paradigms of tiny object detection.Comment: Accepted for publication at MICCAI 2018 (21st International Conference on Medical Image Computing and Computer Assisted Intervention
    corecore