879,118 research outputs found

    Natural language processing

    Get PDF
    Beginning with the basic issues of NLP, this chapter aims to chart the major research activities in this area since the last ARIST Chapter in 1996 (Haas, 1996), including: (i) natural language text processing systems - text summarization, information extraction, information retrieval, etc., including domain-specific applications; (ii) natural language interfaces; (iii) NLP in the context of www and digital libraries ; and (iv) evaluation of NLP systems

    Chart-driven Connectionist Categorial Parsing of Spoken Korean

    Full text link
    While most of the speech and natural language systems which were developed for English and other Indo-European languages neglect the morphological processing and integrate speech and natural language at the word level, for the agglutinative languages such as Korean and Japanese, the morphological processing plays a major role in the language processing since these languages have very complex morphological phenomena and relatively simple syntactic functionality. Obviously degenerated morphological processing limits the usable vocabulary size for the system and word-level dictionary results in exponential explosion in the number of dictionary entries. For the agglutinative languages, we need sub-word level integration which leaves rooms for general morphological processing. In this paper, we developed a phoneme-level integration model of speech and linguistic processings through general morphological analysis for agglutinative languages and a efficient parsing scheme for that integration. Korean is modeled lexically based on the categorial grammar formalism with unordered argument and suppressed category extensions, and chart-driven connectionist parsing method is introduced.Comment: 6 pages, Postscript file, Proceedings of ICCPOL'9

    Morphological Cues for Lexical Semantics

    Full text link
    Most natural language processing tasks require lexical semantic information. Automated acquisition of this information would thus increase the robustness and portability of NLP systems. This paper describes an acquisition method which makes use of fixed correspondences between derivational affixes and lexical semantic information. One advantage of this method, and of other methods that rely only on surface characteristics of language, is that the necessary input is currently available

    Language Without Words: A Pointillist Model for Natural Language Processing

    Full text link
    This paper explores two separate questions: Can we perform natural language processing tasks without a lexicon?; and, Should we? Existing natural language processing techniques are either based on words as units or use units such as grams only for basic classification tasks. How close can a machine come to reasoning about the meanings of words and phrases in a corpus without using any lexicon, based only on grams? Our own motivation for posing this question is based on our efforts to find popular trends in words and phrases from online Chinese social media. This form of written Chinese uses so many neologisms, creative character placements, and combinations of writing systems that it has been dubbed the "Martian Language." Readers must often use visual queues, audible queues from reading out loud, and their knowledge and understanding of current events to understand a post. For analysis of popular trends, the specific problem is that it is difficult to build a lexicon when the invention of new ways to refer to a word or concept is easy and common. For natural language processing in general, we argue in this paper that new uses of language in social media will challenge machines' abilities to operate with words as the basic unit of understanding, not only in Chinese but potentially in other languages.Comment: 5 pages, 2 figure

    The REVERE project:Experiments with the application of probabilistic NLP to systems engineering

    Get PDF
    Despite natural language’s well-documented shortcomings as a medium for precise technical description, its use in software-intensive systems engineering remains inescapable. This poses many problems for engineers who must derive problem understanding and synthesise precise solution descriptions from free text. This is true both for the largely unstructured textual descriptions from which system requirements are derived, and for more formal documents, such as standards, which impose requirements on system development processes. This paper describes experiments that we have carried out in the REVERE1 project to investigate the use of probabilistic natural language processing techniques to provide systems engineering support
    corecore