1,038 research outputs found
Hepatitis C virus NS5A targets the nucleosome assembly protein NAP1L1 to control the innate cellular response
Hepatitis C virus (HCV) is a single-stranded positive-sense RNA hepatotropic virus. Despite cellular defenses, HCV is able to replicate in hepatocytes and to establish a chronic infection that could lead to severe complications and hepatocellular carcinoma. An important player in subverting the host response to HCV infection is the viral non-structural protein NS5A that, in addition to its role in replication and assembly, targets several pathways involved in the cellular response to viral infection. Several unbiased screens identified the nucleosome-assembly protein 1-like 1 (NAP1L1) as an interaction partner of HCV NS5A. Here we confirm this interaction and map it to the C-terminus of NS5A of both genotype 1 and 2. NS5A sequesters NAP1L1 in the cytoplasm blocking its nuclear translocation. However, only NS5A from genotype 2 HCV, but not from genotype 1, targets NAP1L1 for proteosomal-mediated degradation. NAP1L1 is a nuclear chaperone involved in chromatin remodeling and we demonstrate the NAP1L1-dependent regulation of specific pathways involved in cellular responses to viral infection and cell survival. Among those we show that lack of NAP1L1 leads to a decrease of RELA protein levels and a strong defect of IRF3 TBK1/IKKϵ-mediated phosphorylation leading to inefficient RIG-I and TLR3 responses. Hence, HCV is able to modulate the host cell environment by targeting NAP1L1 through NS5A
NAP1L1-MLLT10 is a rare recurrent translocation that is associated with HOXA activation and poor treatment response in T-cell acute lymphoblastic leukaemia
International audienceno abstrac
Phosphorylation of serine 225 in hepatitis C virus NS5A regulates protein-protein interactions.
Hepatitis C virus (HCV) non-structural protein 5A (NS5A) is a phosphoprotein that plays key, yet poorly defined, roles in both virus genome replication and virion assembly/release. It has been proposed that differential phosphorylation could act as a switch to regulate the various functions of NS5A, however the mechanistic details of the role of this post-translational modification in the virus life cycle remains obscure. We previously reported (Ross-Thriepland et al, 2015) a role for phosphorylation at serine 225 (S225) of NS5A in the regulation of JFH-1 (genotype 2a) genome replication. A phosphoablatant (S225A) mutation resulted in a 10-fold reduction in replication and a perinuclear restricted distribution of NS5A, whereas the corresponding phosphomimetic mutation (S225D) had no phenotype. To determine the molecular mechanisms underpinning this phenotype we conducted a label-free proteomics approach to identify cellular NS5A interaction partners. This analysis 30 revealed that the S225A mutation disrupted the interactions of NS5A with a number of cellular proteins, in particular the nucleosome assembly protein 1-like protein 1 (NAP1L1), bridging integrator 1 (Bin1, also known as Amphiphysin II) and vesicle associated membrane protein-associated protein A (VAP-A). These interactions were validated by immunoprecipitation/western blotting, immunofluorescence and proximity ligation assay. Importantly, siRNA-mediated knockdown of NAP1L1, Bin1 or VAP-A impaired viral genome replication and recapitulated the perinuclear redistribution of NS5A seen in the S225A mutant. These results demonstrate that S225 phosphorylation regulates the interactions of NS5A with a defined subset of cellular proteins. Furthermore, these interactions regulate both HCV genome replication and the subcellular localisation of replication complexes. IMPORTANCE Hepatitis C virus is an important human pathogen. The viral nonstructural 5A protein (NS5A) is the target for new antiviral drugs. NS5A has multiple functions during the virus life cycle, but the biochemical details of these roles remain obscure. NS5A is known to be phosphorylated by cellular protein kinases, and in this study, we set out to determine whether this modification is required for the binding of NS5A to other cellular proteins. We identified 3 such proteins and show that they interacted only with NS5A that was phosphorylated on a specific residue. Furthermore, these proteins were required for efficient virus replication and the ability of NS5A to spread throughout the cytoplasm of the cell. Our results help to define the function of NS5A and may contribute to an understanding of the mode of action of the highly potent antiviral drugs that are targeted to NS5A
H2A.Z Acidic Patch Couples Chromatin Dynamics to Regulation of Gene Expression Programs during ESC Differentiation
The histone H2A variant H2A.Z is essential for embryonic development and for proper control of developmental gene expression programs in embryonic stem cells (ESCs). Divergent regions of amino acid sequence of H2A.Z likely determine its functional specialization compared to core histone H2A. For example, H2A.Z contains three divergent residues in the essential C-terminal acidic patch that reside on the surface of the histone octamer as an uninterrupted acidic patch domain; however, we know little about how these residues contribute to chromatin structure and function. Here, we show that the divergent amino acids Gly92, Asp97, and Ser98 in the H2A.Z C-terminal acidic patch (H2A.Z[superscript AP3]) are critical for lineage commitment during ESC differentiation. H2A.Z is enriched at most H3K4me3 promoters in ESCs including poised, bivalent promoters that harbor both activating and repressive marks, H3K4me3 and H3K27me3 respectively. We found that while H2A.Z[superscript AP3] interacted with its deposition complex and displayed a highly similar distribution pattern compared to wild-type H2A.Z, its enrichment levels were reduced at target promoters. Further analysis revealed that H2A.Z[superscript AP3] was less tightly associated with chromatin, suggesting that the mutant is more dynamic. Notably, bivalent genes in H2A.Z[superscript AP3] ESCs displayed significant changes in expression compared to active genes. Moreover, bivalent genes in H2A.Z[superscript AP3] ESCs gained H3.3, a variant associated with higher nucleosome turnover, compared to wild-type H2A.Z. We next performed single cell imaging to measure H2A.Z dynamics. We found that H2A.Z[superscript AP3] displayed higher mobility in chromatin compared to wild-type H2A.Z by fluorescent recovery after photobleaching (FRAP). Moreover, ESCs treated with the transcriptional inhibitor flavopiridol resulted in a decrease in the H2A.Z[superscript AP3] mobile fraction and an increase in its occupancy at target genes indicating that the mutant can be properly incorporated into chromatin. Collectively, our work suggests that the divergent residues in the H2A.Z acidic patch comprise a unique domain that couples control of chromatin dynamics to the regulation of developmental gene expression patterns during lineage commitment.Massachusetts Life Sciences Center (David H. Koch Institute for Integrative Cancer Research at MIT Core Grant P30-CA14051)National Science Foundation (U.S.). Emergent Behaviors of Integrated Cellular Systems (Grant CBET-0939511)MIT Faculty Start-up FundMassachusetts Institute of Technology. Computational and Systems Biology Initiative (Merck & Co. Postdoctoral Fellowship
Modules identification in gene positive networks of hepatocellular carcinoma using pearson agglomerative method and Pearson cohesion coupling modularity
In this study, a gene positive network is proposed based on a weighted undirected graph, where the weight represents the positive correlation of the genes. A Pearson agglomerative clustering algorithm is employed to build a clustering tree, where dotted lines cut the tree from bottom to top leading to a number of subsets of the modules. In order to achieve better module partitions, the Pearson correlation coefficient modularity is addressed to seek optimal module decomposition by selecting an optimal threshold value. For the liver cancer gene network under study, we obtain a strong threshold value at 0.67302, and a very strong correlation threshold at 0.80086. On the basis of these threshold values, fourteen strong modules and thirteen very strong modules are obtained respectively. A certain degree of correspondence between the two types of modules is addressed as well. Finally, the biological significance of the two types of modules is analyzed and explained, which shows that these modules are closely related to the proliferation and metastasis of liver cancer. This discovery of the new modules may provide new clues and ideas for liver cancer treatment
The human RBPome: From genes and proteins to human disease
RNA binding proteins (RBPs) play a central role in mediating post transcriptional regulation of genes. However less is understood about them and their regulatory mechanisms. In this study, we construct a catalogue of 1344 experimentally confirmed RBPs. The domain architecture of RBPs enabled us to classify them into three groups — Classical (29%), Non-classical (19%) and unclassified (52%). A higher percentage of proteins with unclassified domains reveals the presence of various uncharacterised motifs that can potentially bind RNA. RBPs were found to be highly disordered compared to Non-RBPs (p < 2.2e-16, Fisher's exact test), suggestive of a dynamic regulatory role of RBPs in cellular signalling and homeostasis. Evolutionary analysis in 62 different species showed that RBPs are highly conserved compared to Non-RBPs (p < 2.2e-16, Wilcox-test), reflecting the conservation of various biological processes like mRNA splicing and ribosome biogenesis. The expression patterns of RBPs from human proteome map revealed that ~ 40% of them are ubiquitously expressed and ~ 60% are tissue-specific. RBPs were also seen to be highly associated with several neurological disorders, cancer and inflammatory diseases. Anatomical contexts like B cells, T-cells, foetal liver and foetal brain were found to be strongly enriched for RBPs, implying a prominent role of RBPs in immune responses and different developmental stages. The catalogue and meta-analysis presented here should form a foundation for furthering our understanding of RBPs and the cellular networks they control, in years to come.
This article is part of a Special Issue entitled: Proteomics in India
An integrated genomic approach for the study of mandibular prognathism in the European seabass (Dicentrarchus labrax)
Skeletal anomalies in farmed fish are a relevant issue affecting animal welfare and health and causing significant economic losses. Here, a high-density genetic map of European seabass for QTL mapping of jaw deformity was constructed and a genome-wide association study (GWAS) was carried out on a total of 298 juveniles, 148 of which belonged to four full-sib families. Out of 298 fish, 107 were affected by mandibular prognathism (MP). Three significant QTLs and two candidate SNPs associated with MP were identified. The two GWAS candidate markers were located on ChrX and Chr17, both in close proximity with the peaks of the two most significant QTLs. Notably, the SNP marker on Chr17 was positioned within the Sobp gene coding region, which plays a pivotal role in craniofacial development. The analysis of differentially expressed genes in jaw-deformed animals highlighted the "nervous system development" as a crucial pathway in MP. In particular, Zic2, a key gene for craniofacial morphogenesis in model species, was significantly down-regulated in MP-affected animals. Gene expression data revealed also a significant down-regulation of Sobp in deformed larvae. Our analyses, integrating transcriptomic and GWA methods, provide evidence for putative mechanisms underlying seabass jaw deformity
- …
