5,159 research outputs found
Control of fluorescence in quantum emitter and metallic nanoshell hybrids for medical applications
We study the light emission from quantum emitter and double metallic
nanoshell hybrid systems. Quantum emitters act as local sources which transmit
their light efficiently due to a double nanoshell near field. The double
nanoshell consists a dielectric core and two outer nanoshells
Near-Infrared Super Resolution Imaging with Metallic Nanoshell Particle Chain Array
We propose a near-infrared super resolution imaging system without a lens or
a mirror but with an array of metallic nanoshell particle chain. The imaging
array can plasmonically transfer the near-field components of dipole sources in
the incoherent and coherent manners and the super resolution images can be
reconstructed in the output plane. By tunning the parameters of the metallic
nanoshell particle, the plasmon resonance band of the isolate nanoshell
particle red-shifts to the near-infrared region. The near-infrared super
resolution images are obtained subsequently. We calculate the field intensity
distribution at the different planes of imaging process using the finite
element method and find that the array has super resolution imaging capability
at near-infrared wavelengths. We also show that the image formation highly
depends on the coherence of the dipole sources and the image-array distance.Comment: 15 pages, 6 figure
Fano resonances in plasmonic core-shell particles and the Purcell effect
Despite a long history, light scattering by particles with size comparable
with the light wavelength still unveils surprising optical phenomena, and many
of them are related to the Fano effect. Originally described in the context of
atomic physics, the Fano resonance in light scattering arises from the
interference between a narrow subradiant mode and a spectrally broad radiation
line. Here, we present an overview of Fano resonances in coated spherical
scatterers within the framework of the Lorenz-Mie theory. We briefly introduce
the concept of conventional and unconventional Fano resonances in light
scattering. These resonances are associated with the interference between
electromagnetic modes excited in the particle with different or the same
multipole moment, respectively. In addition, we investigate the modification of
the spontaneous-emission rate of an optical emitter at the presence of a
plasmonic nanoshell. This modification of decay rate due to electromagnetic
environment is referred to as the Purcell effect. We analytically show that the
Purcell factor related to a dipole emitter oriented orthogonal or tangential to
the spherical surface can exhibit Fano or Lorentzian line shapes in the near
field, respectively.Comment: 28 pages, 10 figures; invited book chapter to appear in "Fano
Resonances in Optics and Microwaves: Physics and Application", Springer
Series in Optical Sciences (2018), edited by E. O. Kamenetskii, A. Sadreev,
and A. Miroshnichenk
Spectroscopic properties of a two-level atom interacting with a complex spherical nanoshell
Frequency shifts, radiative decay rates, the Ohmic loss contribution to the
nonradiative decay rates, fluorescence yields, and photobleaching of a
two-level atom radiating anywhere inside or outside a complex spherical
nanoshell, i.e. a stratified sphere consisting of alternating silica and gold
concentric spherical shells, are studied. The changes in the spectroscopic
properties of an atom interacting with complex nanoshells are significantly
enhanced, often more than two orders of magnitude, compared to the same atom
interacting with a homogeneous dielectric sphere. The detected fluorescence
intensity can be enhanced by 5 or more orders of magnitude. The changes
strongly depend on the nanoshell parameters and the atom position. When an atom
approaches a metal shell, decay rates are strongly enhanced yet fluorescence
exhibits a well-known quenching. Rather contra-intuitively, the Ohmic loss
contribution to the nonradiative decay rates for an atomic dipole within the
silica core of larger nanoshells may be decreasing when the silica core - inner
gold shell interface is approached. The quasistatic result that the radial
frequency shift in a close proximity of a spherical shell interface is
approximately twice as large as the tangential frequency shift appears to apply
also for complex nanoshells. Significantly modified spectroscopic properties
(see computer program (pending publication of this manuscript) freely available
at http://www.wave-scattering.com) can be observed in a broad band comprising
all (nonresonant) optical and near-infrared wavelengths.Comment: 20 pages plus 63 references and 11 figures, plain LaTex, for more
information see http://www.wave-scattering.com (color of D sphere in figures
2-6 altered, minor typos corrected.
Electronic structure and optical properties of metallic nanoshells
The electronic structure and optical properties of metallic nanoshells are
investigated using a jellium model and the Time Dependent Local Density
Approximation (TDLDA). An efficient numerical implementation enables
applications to nanoshells of realistic size with up to a million electrons. We
demonstrate how a frequency dependent background polarizability of the jellium
shell can be included in the TDLDA formalism. The energies of the plasmon
resonances are calculated for nanoshells of different sizes and with different
dielectric cores, dielectric embedding media, and dielectric shell backgrounds.
The plasmon energies are found to be in good agreement with the results from
classical Mie scattering theory using a Drude dielectric function. A comparison
with experimental data shows excellent agreement between theory and the
measured frequency dependent absorption spectra
Vortices on a superconducting nanoshell: phase diagram and dynamics
In superconductors, the search for special vortex states such as giant
vortices focuses on laterally confined or nanopatterned thin superconducting
films, disks, rings, or polygons. We examine the possibility to realize giant
vortex states and states with non-uniform vorticity on a superconducting
spherical nanoshell, due to the interplay of the topology and the applied
magnetic field. We derive the phase diagram and identify where, as a function
of the applied magnetic field, the shell thickness and the shell radius, these
different vortex phases occur. Moreover, the curved geometry allows these
states (or a vortex lattice) to coexist with a Meissner state, on the same
curved film. We have examined the dynamics of the decay of giant vortices or
states with non-uniform vorticity into a vortex lattice, when the magnetic
field is adapted so that a phase boundary is crossed.Comment: 21 pages, 9 figure
- …
