10,579 research outputs found
Monolithic Integration of a Plasmonic Sensor with CMOS Technology
Monolithic integration of nanophotonic sensors with CMOS detectors can transform the laboratory based nanophotonic sensors into practical devices with a range of applications in everyday life. In this work, by monolithically integrating an array of gold nanodiscs with the CMOS photodiode we have developed a compact and miniaturized nanophotonic sensor system having direct electrical read out. Doing so eliminates the need of expensive and bulky laboratory based optical spectrum analyzers used currently for measurements of nanophotonic sensor chips. The experimental optical sensitivity of the gold nanodiscs is measured to be 275 nm/RIU which translates to an electrical sensitivity of 5.4 V/RIU. This integration of nanophotonic sensors with the CMOS electronics has the potential to revolutionize personalized medical diagnostics similar to the way in which the CMOS technology has revolutionized the electronics industry
Silicon nanophotonic waveguide circuits and devices
Silicon on Insulator is an ideal platform for largescale nanophotonic integration. We show that tight process control is needed for well-functioning filters, and discuss a number of devices based on these filters
Tuning out disorder-induced localization in nanophotonic cavity arrays
Weakly coupled high-Q nanophotonic cavities are building blocks of slow-light
waveguides and other nanophotonic devices. Their functionality critically
depends on tuning as resonance frequencies should stay within the bandwidth of
the device. Unavoidable disorder leads to random frequency shifts which cause
localization of the light in single cavities. We present a new method to finely
tune individual resonances of light in a system of coupled nanocavities. We use
holographic laser-induced heating and address thermal crosstalk between
nanocavities using a response matrix approach. As a main result we observe a
simultaneous anticrossing of 3 nanophotonic resonances, which were initially
split by disorder.Comment: 11 page
Efficient fiber-optical interface for nanophotonic devices
We demonstrate a method for efficient coupling of guided light from a single
mode optical fiber to nanophotonic devices. Our approach makes use of
single-sided conical tapered optical fibers that are evanescently coupled over
the last ~10 um to a nanophotonic waveguide. By means of adiabatic mode
transfer using a properly chosen taper, single-mode fiber-waveguide coupling
efficiencies as high as 97(1)% are achieved. Efficient coupling is obtained for
a wide range of device geometries which are either singly-clamped on a chip or
attached to the fiber, demonstrating a promising approach for integrated
nanophotonic circuits, quantum optical and nanoscale sensing applications.Comment: 7 pages, 4 figures, includes supplementary informatio
- …