527,935 research outputs found
Holographic particle localization under multiple scattering
We introduce a novel framework that incorporates multiple scattering for
large-scale 3D particle-localization using single-shot in-line holography.
Traditional holographic techniques rely on single-scattering models which
become inaccurate under high particle-density. We demonstrate that by
exploiting multiple-scattering, localization is significantly improved. Both
forward and back-scattering are computed by our method under a tractable
recursive framework, in which each recursion estimates the next higher-order
field within the volume. The inverse scattering is presented as a nonlinear
optimization that promotes sparsity, and can be implemented efficiently. We
experimentally reconstruct 100 million object voxels from a single 1-megapixel
hologram. Our work promises utilization of multiple scattering for versatile
large-scale applications
Does HBT Measure the Freeze-out Source Distribution?
It is generally assumed that as a result of multiple scattering, the source
distribution measured in HBT interferometry corresponds to a chaotic source at
freeze-out. This assumption is subject to question as effects of multiple
scattering in HBT measurements must be investigated within a quantum-mechanical
framework. Applying the Glauber multiple scattering theory at high energies and
the optical model at lower energies, we find that multiple scattering leads to
an effective HBT density distribution that depends on the initial chaotic
source distribution with an absorption.Comment: 4 pages, talk presented at QM2004 Conference, January 11-17, 2004,
Oakland, California, USA, to be published in the Proceeding
Multiple scattering of ultrasound in weakly inhomogeneous media: application to human soft tissues
Waves scattered by a weakly inhomogeneous random medium contain a predominant
single scattering contribution as well as a multiple scattering contribution
which is usually neglected, especially for imaging purposes. A method based on
random matrix theory is proposed to separate the single and multiple scattering
contributions. The experimental set up uses an array of sources/receivers
placed in front of the medium. The impulse responses between every couple of
transducers are measured and form a matrix. Single-scattering contributions are
shown to exhibit a deterministic coherence along the antidiagonals of the array
response matrix, whatever the distribution of inhomogeneities. This property is
taken advantage of to discriminate single from multiple-scattered waves. This
allows one to evaluate the absorption losses and the scattering losses
separately, by comparing the multiple scattering intensity with a radiative
transfer model. Moreover, the relative contribution of multiple scattering in
the backscattered wave can be estimated, which serves as a validity test for
the Born approximation. Experimental results are presented with ultrasonic
waves in the MHz range, on a synthetic sample (agar-gelatine gel) as well as on
breast tissues. Interestingly, the multiple scattering contribution is found to
be far from negligible in the breast around 4.3 MHz.Comment: 35 pages, 11 figures, final version, contains the appendix of the
original articl
Multiple scattering limit in optical microscopy
Optical microscopy offers a unique insight of biological structures with a
sub-micrometer resolution and a minimum invasiveness. However, the
inhomogeneities of the specimen itself can induce multiple scattering of light
and optical aberrations which limit the observation to depths close to the
surface. To predict quantitatively the penetration depth in microscopy, we
theoretically derive the single-to-multiple scattering ratio in reflection.
From this key quantity, the multiple scattering limit is deduced for various
microscopic imaging techniques such as confocal microscopy, optical coherence
tomography and related methods.Comment: 18 pages, 7 figure
Transport of quantum noise through random media
We present an experimental study of the propagation of quantum noise in a
multiple scattering random medium. Both static and dynamic scattering
measurements are performed: the total transmission of noise is related to the
mean free path for scattering, while the noise frequency correlation function
determines the diffusion constant. The quantum noise observables are found to
scale markedly differently with scattering parameters compared to classical
noise observables. The measurements are explained with a full quantum model of
multiple scattering
Multiple light scattering and optomechanical forces
When off-resonant light travels through a transparent medium, light scattering is the primary optical process to occur. Multiple-particle events are relatively rare in optically dilute systems: scattering generally takes place at individual atomic or molecular centers. Several well-known phenomena result from such single-center interactions, including Rayleigh and Raman scattering, and the optomechanical forces responsible for optical tweezers. Other, less familiar effects may arise in circumstances where throughput radiation is able to simultaneously engage with two or more scattering sites in close, nanoscale, proximity. Exhibiting the distinctive near-field electromagnetic character, inter-particle interactions such as optical binding and a variety of inelastic bimolecular processes can then occur. Although the theory for each two-center process is well established, the connectivity of their mechanisms has not received sufficient attention. To address this deficiency, and to consider the issues that ensue, it is expedient to represent the various forms of multi-particle light scattering in terms of transitions between different radiation states. The corresponding quantum amplitudes, registering the evolution of photon trajectories through the material system, can be calculated using the tools of quantum electrodynamics. Each of the potential outcomes for multi-particle scattering generates a set of amplitudes corresponding to different orderings of the constituent photon-matter interactions. Performing the necessary sums over quantum pathways between radiation states is expedited by a state-sequence development, this formalism also enabling the identification of intermediate states held in common by different paths. The results reveal the origin and consequences of linear momentum conservation, and they also offer new insights into the behavior of light between closely neighboring scattering events. © 2010 Society of Photo-Optical Instrumentation Engineers
Theory of disorder-induced multiple coherent scattering in photonic crystal waveguides
We introduce a theoretical formalism to describe disorder-induced extrinsic
scattering in slow-light photonic crystal waveguides. This work details and
extends the optical scattering theory used in a recent \emph{Physical Review
Letter} [M. Patterson \emph{et al.}, \emph{Phys. Rev. Lett.} \textbf{102},
103901 (2009)] to describe coherent scattering phenomena and successfully
explain complex experimental measurements. Our presented theory, that combines
Green function and coupled mode methods, allows one to self-consistently
account for arbitrary multiple scattering for the propagating electric field
and recover experimental features such as resonances near the band edge. The
technique is fully three-dimensional and can calculate the effects of disorder
on the propagating field over thousands of unit cells. As an application of
this theory, we explore various sample lengths and disordered instances, and
demonstrate the profound effect of multiple scattering in the waveguide
transmission. The spectra yield rich features associated with disorder-induced
localization and multiple scattering, which are shown to be exasperated in the
slow light propagation regime
- …
