1,706,268 research outputs found
An evaluation of socio-economic classification systems : a thesis presented in partial fulfilment of the requirements for the degree of Master of Business Studies at Massey University
This thesis evaluates some commonly used socio-economic classification systems. Some of the systems evaluated have been used for many years in the market research industry in New Zealand whilst others are recent additions or are more commonly used in the United Kingdom.
The main objective of this study was to test the ability of the systems to predict purchasing levels of consumer products and services. The second objective was to evaluate how well the various systems predict brand choice.
A sample of 1596 respondents was provided by AGB McNair from their media survey database. Multiple regression was used to predict the level of usage of each product, with the adjusted R valua of the equation as the measure of the power of the classification system. Nominal variables, such as brand last used, were crosstabulated against the classification categories, and Lambdas calculated. A further measure of the ability of the classification systems to predict brand choice was obtained by performing discriminant analysis, which generated classification tables. The percentage of cases correctly classified provided a further measure of performance.
The various classification systems were not very good at predicting purchasing behaviour. The better systems accounyted for about 2% or 3% of the variation in quantities purchased. The various classification systems were also not very good at predicting brand choice. Even though the various classification systems explained little of the variation in quantities purchased and brand choices, they are still very useful. The socio-economic classification systems can be used as a starting poing from which better preditors of purchasing behaviour can be developed
Distributed Online Big Data Classification Using Context Information
Distributed, online data mining systems have emerged as a result of
applications requiring analysis of large amounts of correlated and
high-dimensional data produced by multiple distributed data sources. We propose
a distributed online data classification framework where data is gathered by
distributed data sources and processed by a heterogeneous set of distributed
learners which learn online, at run-time, how to classify the different data
streams either by using their locally available classification functions or by
helping each other by classifying each other's data. Importantly, since the
data is gathered at different locations, sending the data to another learner to
process incurs additional costs such as delays, and hence this will be only
beneficial if the benefits obtained from a better classification will exceed
the costs. We model the problem of joint classification by the distributed and
heterogeneous learners from multiple data sources as a distributed contextual
bandit problem where each data is characterized by a specific context. We
develop a distributed online learning algorithm for which we can prove
sublinear regret. Compared to prior work in distributed online data mining, our
work is the first to provide analytic regret results characterizing the
performance of the proposed algorithm
Computing Equilibria of Semi-algebraic Economies Using Triangular Decomposition and Real Solution Classification
In this paper, we are concerned with the problem of determining the existence
of multiple equilibria in economic models. We propose a general and complete
approach for identifying multiplicities of equilibria in semi-algebraic
economies, which may be expressed as semi-algebraic systems. The approach is
based on triangular decomposition and real solution classification, two
powerful tools of algebraic computation. Its effectiveness is illustrated by
two examples of application.Comment: 24 pages, 5 figure
Symmetric RBF classifier for nonlinear detection in multiple-antenna aided systems
In this paper, we propose a powerful symmetric radial basis function (RBF) classifier for nonlinear detection in the so-called “overloaded” multiple-antenna-aided communication systems. By exploiting the inherent symmetry property of the optimal Bayesian detector, the proposed symmetric RBF classifier is capable of approaching the optimal classification performance using noisy training data. The classifier construction process is robust to the choice of the RBF width and is computationally efficient. The proposed solution is capable of providing a signal-to-noise ratio (SNR) gain in excess of 8 dB against the powerful linear minimum bit error rate (BER) benchmark, when supporting four users with the aid of two receive antennas or seven users with four receive antenna elements. Index Terms—Classification, multiple-antenna system, orthogonal forward selection, radial basis function (RBF), symmetry
Wireless magnetic sensor network for road traffic monitoring and vehicle classification
Efficiency of transportation of people and goods is playing a vital role in economic growth. A key component for enabling effective planning of transportation networks is the deployment and operation of autonomous monitoring and traffic analysis tools. For that reason, such systems have been developed to register and classify road traffic usage. In this paper, we propose a novel system for road traffic monitoring and classification based on highly energy efficient wireless magnetic sensor networks. We develop novel algorithms for vehicle speed and length estimation and vehicle classification that use multiple magnetic sensors. We also demonstrate that, using such a low-cost system with simplified installation and maintenance compared to current solutions, it is possible to achieve highly accurate estimation and a high rate of positive vehicle classification
Rate-Accuracy Trade-Off In Video Classification With Deep Convolutional Neural Networks
Advanced video classification systems decode video frames to derive the
necessary texture and motion representations for ingestion and analysis by
spatio-temporal deep convolutional neural networks (CNNs). However, when
considering visual Internet-of-Things applications, surveillance systems and
semantic crawlers of large video repositories, the video capture and the
CNN-based semantic analysis parts do not tend to be co-located. This
necessitates the transport of compressed video over networks and incurs
significant overhead in bandwidth and energy consumption, thereby significantly
undermining the deployment potential of such systems. In this paper, we
investigate the trade-off between the encoding bitrate and the achievable
accuracy of CNN-based video classification models that directly ingest
AVC/H.264 and HEVC encoded videos. Instead of retaining entire compressed video
bitstreams and applying complex optical flow calculations prior to CNN
processing, we only retain motion vector and select texture information at
significantly-reduced bitrates and apply no additional processing prior to CNN
ingestion. Based on three CNN architectures and two action recognition
datasets, we achieve 11%-94% saving in bitrate with marginal effect on
classification accuracy. A model-based selection between multiple CNNs
increases these savings further, to the point where, if up to 7% loss of
accuracy can be tolerated, video classification can take place with as little
as 3 kbps for the transport of the required compressed video information to the
system implementing the CNN models
Radar-based Feature Design and Multiclass Classification for Road User Recognition
The classification of individual traffic participants is a complex task,
especially for challenging scenarios with multiple road users or under bad
weather conditions. Radar sensors provide an - with respect to well established
camera systems - orthogonal way of measuring such scenes. In order to gain
accurate classification results, 50 different features are extracted from the
measurement data and tested on their performance. From these features a
suitable subset is chosen and passed to random forest and long short-term
memory (LSTM) classifiers to obtain class predictions for the radar input.
Moreover, it is shown why data imbalance is an inherent problem in automotive
radar classification when the dataset is not sufficiently large. To overcome
this issue, classifier binarization is used among other techniques in order to
better account for underrepresented classes. A new method to couple the
resulting probabilities is proposed and compared to others with great success.
Final results show substantial improvements when compared to ordinary
multiclass classificationComment: 8 pages, 6 figure
Revisiting Visual Question Answering Baselines
Visual question answering (VQA) is an interesting learning setting for
evaluating the abilities and shortcomings of current systems for image
understanding. Many of the recently proposed VQA systems include attention or
memory mechanisms designed to support "reasoning". For multiple-choice VQA,
nearly all of these systems train a multi-class classifier on image and
question features to predict an answer. This paper questions the value of these
common practices and develops a simple alternative model based on binary
classification. Instead of treating answers as competing choices, our model
receives the answer as input and predicts whether or not an
image-question-answer triplet is correct. We evaluate our model on the Visual7W
Telling and the VQA Real Multiple Choice tasks, and find that even simple
versions of our model perform competitively. Our best model achieves
state-of-the-art performance on the Visual7W Telling task and compares
surprisingly well with the most complex systems proposed for the VQA Real
Multiple Choice task. We explore variants of the model and study its
transferability between both datasets. We also present an error analysis of our
model that suggests a key problem of current VQA systems lies in the lack of
visual grounding of concepts that occur in the questions and answers. Overall,
our results suggest that the performance of current VQA systems is not
significantly better than that of systems designed to exploit dataset biases.Comment: European Conference on Computer Visio
- …
