110,604 research outputs found
Bilateral diffuse choroidal hemangioma in Sturge Weber syndrome: a case report highlighting the role of multimodal imaging and a brief review of the literature
Purpose: The purpose of this paper is to present a patient with bilateral choroidal hemangioma in Sturge-Weber syndrome (SWS) and highlight multimodal imaging techniques for early detection and management of ocular alterations. Methods: A 37-year-old woman with diagnosis of SWS presented to our unit. The patient had been treated with pulsed dye laser for bilateral nevus flammeus and had right leptomeningeal angiomatosis. She had glaucoma, but ultrasound biomicroscopy did not show anterior chamber or ciliary body alterations. Results: Enhanced depth imaging (EDI) spectral domain optical coherence tomography (SD-OCT) showed bilateral diffuse choroidal hemangiomas in both eyes with choroidal thickness above 1000 μm. B-scan ultrasound examination showed diffuse choroidal hemangioma in both eyes, with a choroidal thickness of 1.53 mm and 1.94 mm in the right and left eye (RE, LE), respectively. Peripapillary retinal nerve fiber evaluation showed thinning of the retinal nerve fiber layer in both eyes. Conclusions: This report highlights multimodal imaging techniques for the critical assessment of patients with SWS, especially in rare cases with bilateral choroidal hemangioma of the choroid. Novel imaging modalities enable optimal management and follow-up of rare conditions, and our case adds further evidence to the existing literature
Acute Stroke Multimodal Imaging: Present and Potential Applications toward Advancing Care.
In the past few decades, the field of acute ischemic stroke (AIS) has experienced significant advances in clinical practice. A core driver of this success has been the utilization of acute stroke imaging with an increasing focus on advanced methods including multimodal imaging. Such imaging techniques not only provide a richer understanding of AIS in vivo, but also, in doing so, provide better informed clinical assessments in management and treatment toward achieving best outcomes. As a result, advanced stroke imaging methods are now a mainstay of routine AIS practice that reflect best practice delivery of care. Furthermore, these imaging methods hold great potential to continue to advance the understanding of AIS and its care in the future. Copyright © 2017 by Thieme Medical Publishers, Inc
Recommended from our members
Automated CT and MRI Liver Segmentation and Biometry Using a Generalized Convolutional Neural Network.
PurposeTo assess feasibility of training a convolutional neural network (CNN) to automate liver segmentation across different imaging modalities and techniques used in clinical practice and apply this to enable automation of liver biometry.MethodsWe trained a 2D U-Net CNN for liver segmentation in two stages using 330 abdominal MRI and CT exams acquired at our institution. First, we trained the neural network with non-contrast multi-echo spoiled-gradient-echo (SGPR)images with 300 MRI exams to provide multiple signal-weightings. Then, we used transfer learning to generalize the CNN with additional images from 30 contrast-enhanced MRI and CT exams.We assessed the performance of the CNN using a distinct multi-institutional data set curated from multiple sources (n = 498 subjects). Segmentation accuracy was evaluated by computing Dice scores. Utilizing these segmentations, we computed liver volume from CT and T1-weighted (T1w) MRI exams, and estimated hepatic proton- density-fat-fraction (PDFF) from multi-echo T2*w MRI exams. We compared quantitative volumetry and PDFF estimates between automated and manual segmentation using Pearson correlation and Bland-Altman statistics.ResultsDice scores were 0.94 ± 0.06 for CT (n = 230), 0.95 ± 0.03 (n = 100) for T1w MR, and 0.92 ± 0.05 for T2*w MR (n = 169). Liver volume measured by manual and automated segmentation agreed closely for CT (95% limit-of-agreement (LoA) = [-298 mL, 180 mL]) and T1w MR (LoA = [-358 mL, 180 mL]). Hepatic PDFF measured by the two segmentations also agreed closely (LoA = [-0.62%, 0.80%]).ConclusionsUtilizing a transfer-learning strategy, we have demonstrated the feasibility of a CNN to be generalized to perform liver segmentations across different imaging techniques and modalities. With further refinement and validation, CNNs may have broad applicability for multimodal liver volumetry and hepatic tissue characterization
Hippocampal and parahippocampal grey matter structural integrity assessed by multimodal imaging is associated with episodic memory in old age
Learning Deep Similarity Metric for 3D MR-TRUS Registration
Purpose: The fusion of transrectal ultrasound (TRUS) and magnetic resonance
(MR) images for guiding targeted prostate biopsy has significantly improved the
biopsy yield of aggressive cancers. A key component of MR-TRUS fusion is image
registration. However, it is very challenging to obtain a robust automatic
MR-TRUS registration due to the large appearance difference between the two
imaging modalities. The work presented in this paper aims to tackle this
problem by addressing two challenges: (i) the definition of a suitable
similarity metric and (ii) the determination of a suitable optimization
strategy.
Methods: This work proposes the use of a deep convolutional neural network to
learn a similarity metric for MR-TRUS registration. We also use a composite
optimization strategy that explores the solution space in order to search for a
suitable initialization for the second-order optimization of the learned
metric. Further, a multi-pass approach is used in order to smooth the metric
for optimization.
Results: The learned similarity metric outperforms the classical mutual
information and also the state-of-the-art MIND feature based methods. The
results indicate that the overall registration framework has a large capture
range. The proposed deep similarity metric based approach obtained a mean TRE
of 3.86mm (with an initial TRE of 16mm) for this challenging problem.
Conclusion: A similarity metric that is learned using a deep neural network
can be used to assess the quality of any given image registration and can be
used in conjunction with the aforementioned optimization framework to perform
automatic registration that is robust to poor initialization.Comment: To appear on IJCAR
Groupwise Multimodal Image Registration using Joint Total Variation
In medical imaging it is common practice to acquire a wide range of
modalities (MRI, CT, PET, etc.), to highlight different structures or
pathologies. As patient movement between scans or scanning session is
unavoidable, registration is often an essential step before any subsequent
image analysis. In this paper, we introduce a cost function based on joint
total variation for such multimodal image registration. This cost function has
the advantage of enabling principled, groupwise alignment of multiple images,
whilst being insensitive to strong intensity non-uniformities. We evaluate our
algorithm on rigidly aligning both simulated and real 3D brain scans. This
validation shows robustness to strong intensity non-uniformities and low
registration errors for CT/PET to MRI alignment. Our implementation is publicly
available at https://github.com/brudfors/coregistration-njtv
Compressive Sensing for Dynamic XRF Scanning
X-Ray Fluorescence (XRF) scanning is a widespread technique of high
importance and impact since it provides chemical composition maps crucial for
several scientific investigations. There are continuous requirements for
larger, faster and highly resolved acquisitions in order to study complex
structures. Among the scientific applications that benefit from it, some of
them, such as wide scale brain imaging, are prohibitively difficult due to time
constraints. However, typically the overall XRF imaging performance is
improving through technological progress on XRF detectors and X-ray sources.
This paper suggests an additional approach where XRF scanning is performed in a
sparse way by skipping specific points or by varying dynamically acquisition
time or other scan settings in a conditional manner. This paves the way for
Compressive Sensing in XRF scans where data are acquired in a reduced manner
allowing for challenging experiments, currently not feasible with the
traditional scanning strategies. A series of different compressive sensing
strategies for dynamic scans are presented here. A proof of principle
experiment was performed at the TwinMic beamline of Elettra synchrotron. The
outcome demonstrates the potential of Compressive Sensing for dynamic scans,
suggesting its use in challenging scientific experiments while proposing a
technical solution for beamline acquisition software.Comment: 16 pages, 7 figures, 1 tabl
A multimodal neuroimaging classifier for alcohol dependence
With progress in magnetic resonance imaging technology and a broader dissemination of state-of-the-art imaging facilities, the acquisition of multiple neuroimaging modalities is becoming increasingly feasible. One particular hope associated with multimodal neuroimaging is the development of reliable data-driven diagnostic classifiers for psychiatric disorders, yet previous studies have often failed to find a benefit of combining multiple modalities. As a psychiatric disorder with established neurobiological effects at several levels of description, alcohol dependence is particularly well-suited for multimodal classification. To this aim, we developed a multimodal classification scheme and applied it to a rich neuroimaging battery (structural, functional task-based and functional resting-state data) collected in a matched sample of alcohol-dependent patients (N = 119) and controls (N = 97). We found that our classification scheme yielded 79.3% diagnostic accuracy, which outperformed the strongest individual modality - grey-matter density - by 2.7%. We found that this moderate benefit of multimodal classification depended on a number of critical design choices: a procedure to select optimal modality-specific classifiers, a fine-grained ensemble prediction based on cross-modal weight matrices and continuous classifier decision values. We conclude that the combination of multiple neuroimaging modalities is able to moderately improve the accuracy of machine-learning-based diagnostic classification in alcohol dependence
A holistic multimodal approach to the non-invasive analysis of watercolour paintings
A holistic approach using non-invasive multimodal imaging and spectroscopic techniques to study the materials (pigments, drawing materials and paper) and painting techniques of watercolour paintings is presented. The non-invasive imaging and spectroscopic techniques include VIS-NIR reflectance spectroscopy and multispectral imaging, micro-Raman spectroscopy, X-ray fluorescence spectroscopy (XRF) and optical coherence tomography (OCT). The three spectroscopic techniques complement each other in pigment identification. Multispectral imaging (near infrared bands), OCT and micro-Raman complement each other in the visualisation and identification of the drawing material. OCT probes the microstructure and light scattering properties of the substrate while XRF detects the elemental composition that indicates the sizing methods and the filler content . The multiple techniques were applied in a study of forty six 19th century Chinese export watercolours from the Victoria & Albert Museum (V&A) and the Royal Horticultural Society (RHS) to examine to what extent the non-invasive analysis techniques employed complement each other and how much useful information about the paintings can be extracted to address art conservation and history questions
- …
