138,403 research outputs found

    A Bayesian Ensemble Regression Framework on the Angry Birds Game

    Full text link
    An ensemble inference mechanism is proposed on the Angry Birds domain. It is based on an efficient tree structure for encoding and representing game screenshots, where it exploits its enhanced modeling capability. This has the advantage to establish an informative feature space and modify the task of game playing to a regression analysis problem. To this direction, we assume that each type of object material and bird pair has its own Bayesian linear regression model. In this way, a multi-model regression framework is designed that simultaneously calculates the conditional expectations of several objects and makes a target decision through an ensemble of regression models. Learning procedure is performed according to an online estimation strategy for the model parameters. We provide comparative experimental results on several game levels that empirically illustrate the efficiency of the proposed methodology.Comment: Angry Birds AI Symposium, ECAI 201

    General audio tagging with ensembling convolutional neural network and statistical features

    Full text link
    Audio tagging aims to infer descriptive labels from audio clips. Audio tagging is challenging due to the limited size of data and noisy labels. In this paper, we describe our solution for the DCASE 2018 Task 2 general audio tagging challenge. The contributions of our solution include: We investigated a variety of convolutional neural network architectures to solve the audio tagging task. Statistical features are applied to capture statistical patterns of audio features to improve the classification performance. Ensemble learning is applied to ensemble the outputs from the deep classifiers to utilize complementary information. a sample re-weight strategy is employed for ensemble training to address the noisy label problem. Our system achieves a mean average precision (mAP@3) of 0.958, outperforming the baseline system of 0.704. Our system ranked the 1st and 4th out of 558 submissions in the public and private leaderboard of DCASE 2018 Task 2 challenge. Our codes are available at https://github.com/Cocoxili/DCASE2018Task2/.Comment: Submitted to ICASS

    Multi-label classification using ensembles of pruned sets

    Get PDF
    This paper presents a Pruned Sets method (PS) for multi-label classification. It is centred on the concept of treating sets of labels as single labels. This allows the classification process to inherently take into account correlations between labels. By pruning these sets, PS focuses only on the most important correlations, which reduces complexity and improves accuracy. By combining pruned sets in an ensemble scheme (EPS), new label sets can be formed to adapt to irregular or complex data. The results from experimental evaluation on a variety of multi-label datasets show that [E]PS can achieve better performance and train much faster than other multi-label methods
    corecore