5,569 research outputs found

    Sequential Hybrid Beamforming Design for Multi-Link mmwave Communication

    Full text link
    In this paper, we propose a sequential hybrid beamforming design for multi-link transmission over mmwave frequency bands. As a starting point, a baseline data communication link is established via traditional analog beamforming at both the BS and UE. If an extra RF chain is available at the UE, it can continue to probe the propagation environment at the same frequencies. In case the environment is favorable and system resources allow, a secondary data communication link is established to enable multi-stream transmission. In principle, the secondary link could be served by the same BS and/or one or several other BS(s). To initialize the secondary data communication link, a parallel beam search scheme is proposed, which helps the UE/BS to find a suitable beam pair with given optimization criteria without interrupting the baseline data communication. By applying the proposed two-step approach, hybrid beamforming becomes an add-on feature that can be easily switched on over an analog beamforming enabled system without interrupting its operation whenever system requires. Meanwhile, the information obtained by deploying the proposed parallel beam search scheme can also be used for deciding a back-up beam pair if signal blockage occurs to the baseline data communication link

    Area Law from Loop Quantum Gravity

    Full text link
    We explore the constraints following from requiring the Area Law in the entanglement entropy in the context of loop quantum gravity. We find a unique solution to the single link wave-function in the large j limit, believed to be appropriate in the semi-classical limit. We then generalize our considerations to multi-link coherent states, and find that the area law is preserved very generically using our single link wave-function as a building block. Finally, we develop the framework that generates families of multi-link states that preserve the area law while avoiding macroscopic entanglement, the space-time analogue of "Schroedinger cat". We note that these states, defined on a given set of graphs, are the ground states of some local Hamiltonian that can be constructed explicitly. This can potentially shed light on the construction of the appropriate Hamiltonian constraints in the LQG framework.Comment: 6+5 pages, 2 figures, presentation improved, appendices added, revised version accepted for publication in Physical Review

    Passenger Car Multi-Link Suspensions

    Get PDF
    Práce obsahuje přehled vybraných konstrukčních řešení víceprvkových náprav používaných u současných osobních automobilů. Jednotlivá konstrukční řešení jsou dále popsána. Dále je uveden přehled dalších dnes používaných typů nezávislého zavěšení a je provedeno jejich porovnání s víceprvkovým zavěšením.This work includes summary of choice structural multi-link axles used by contemporary cars. Individual solutions structural design are further desscribed. Further come out survey of other today used types independent suspension and is effected their compare with multi-link suspension.

    Heterogeneous V2V Communications in Multi-Link and Multi-RAT Vehicular Networks

    Get PDF
    Connected and automated vehicles will enable advanced traffic safety and efficiency applications thanks to the dynamic exchange of information between vehicles, and between vehicles and infrastructure nodes. Connected vehicles can utilize IEEE 802.11p for vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications. However, a widespread deployment of connected vehicles and the introduction of connected automated driving applications will notably increase the bandwidth and scalability requirements of vehicular networks. This paper proposes to address these challenges through the adoption of heterogeneous V2V communications in multi-link and multi-RAT vehicular networks. In particular, the paper proposes the first distributed (and decentralized) context-aware heterogeneous V2V communications algorithm that is technology and application agnostic, and that allows each vehicle to autonomously and dynamically select its communications technology taking into account its application requirements and the communication context conditions. This study demonstrates the potential of heterogeneous V2V communications, and the capability of the proposed algorithm to satisfy the vehicles' application requirements while approaching the estimated upper bound network capacity

    Joint Interference Alignment and Bi-Directional Scheduling for MIMO Two-Way Multi-Link Networks

    Full text link
    By means of the emerging technique of dynamic Time Division Duplex (TDD), the switching point between uplink and downlink transmissions can be optimized across a multi-cell system in order to reduce the impact of inter-cell interference. It has been recently recognized that optimizing also the order in which uplink and downlink transmissions, or more generally the two directions of a two-way link, are scheduled can lead to significant benefits in terms of interference reduction. In this work, the optimization of bi-directional scheduling is investigated in conjunction with the design of linear precoding and equalization for a general multi-link MIMO two-way system. A simple algorithm is proposed that performs the joint optimization of the ordering of the transmissions in the two directions of the two-way links and of the linear transceivers, with the aim of minimizing the interference leakage power. Numerical results demonstrate the effectiveness of the proposed strategy.Comment: To be presented at ICC 2015, 6 pages, 7 figure

    Correct-by-Construction Approach for Self-Evolvable Robots

    Full text link
    The paper presents a new formal way of modeling and designing reconfigurable robots, in which case the robots are allowed to reconfigure not only structurally but also functionally. We call such kind of robots "self-evolvable", which have the potential to be more flexible to be used in a wider range of tasks, in a wider range of environments, and with a wider range of users. To accommodate such a concept, i.e., allowing a self-evovable robot to be configured and reconfigured, we present a series of formal constructs, e.g., structural reconfigurable grammar and functional reconfigurable grammar. Furthermore, we present a correct-by-construction strategy, which, given the description of a workspace, the formula specifying a task, and a set of available modules, is capable of constructing during the design phase a robot that is guaranteed to perform the task satisfactorily. We use a planar multi-link manipulator as an example throughout the paper to demonstrate the proposed modeling and designing procedures.Comment: The paper has 17 pages and 4 figure
    corecore