492,028 research outputs found

    Ergonomic Chair Design by Fusing Qualitative and Quantitative Criteria using Interactive Genetic Algorithms

    Get PDF
    This paper emphasizes the necessity of formally bringing qualitative and quantitative criteria of ergonomic design together, and provides a novel complementary design framework with this aim. Within this framework, different design criteria are viewed as optimization objectives; and design solutions are iteratively improved through the cooperative efforts of computer and user. The framework is rooted in multi-objective optimization, genetic algorithms and interactive user evaluation. Three different algorithms based on the framework are developed, and tested with an ergonomic chair design problem. The parallel and multi-objective approaches show promising results in fitness convergence, design diversity and user satisfaction metrics

    A constrained multi-objective surrogate-based optimization algorithm

    Get PDF
    Surrogate models or metamodels are widely used in the realm of engineering for design optimization to minimize the number of computationally expensive simulations. Most practical problems often have conflicting objectives, which lead to a number of competing solutions which form a Pareto front. Multi-objective surrogate-based constrained optimization algorithms have been proposed in literature, but handling constraints directly is a relatively new research area. Most algorithms proposed to directly deal with multi-objective optimization have been evolutionary algorithms (Multi-Objective Evolutionary Algorithms -MOEAs). MOEAs can handle large design spaces but require a large number of simulations, which might be infeasible in practice, especially if the constraints are expensive. A multi-objective constrained optimization algorithm is presented in this paper which makes use of Kriging models, in conjunction with multi-objective probability of improvement (PoI) and probability of feasibility (PoF) criteria to drive the sample selection process economically. The efficacy of the proposed algorithm is demonstrated on an analytical benchmark function, and the algorithm is then used to solve a microwave filter design optimization problem

    Scalarizing cost-effective multiobjective optimization algorithms made possible with kriging

    No full text
    The use of kriging in cost-effective single-objective optimization is well established, and a wide variety of different criteria now exist for selecting design vectors to evaluate in the search for the global minimum. Additionly, a large number of methods exist for transforming a multi-objective optimization problem to a single-objective problem. With these two facts in mind, this paper discusses the range of kriging assisted algorithms which are possible (and which remain to be explored) for cost-effective multi-objective optimization

    A Bayesian approach to constrained single- and multi-objective optimization

    Get PDF
    This article addresses the problem of derivative-free (single- or multi-objective) optimization subject to multiple inequality constraints. Both the objective and constraint functions are assumed to be smooth, non-linear and expensive to evaluate. As a consequence, the number of evaluations that can be used to carry out the optimization is very limited, as in complex industrial design optimization problems. The method we propose to overcome this difficulty has its roots in both the Bayesian and the multi-objective optimization literatures. More specifically, an extended domination rule is used to handle objectives and constraints in a unified way, and a corresponding expected hyper-volume improvement sampling criterion is proposed. This new criterion is naturally adapted to the search of a feasible point when none is available, and reduces to existing Bayesian sampling criteria---the classical Expected Improvement (EI) criterion and some of its constrained/multi-objective extensions---as soon as at least one feasible point is available. The calculation and optimization of the criterion are performed using Sequential Monte Carlo techniques. In particular, an algorithm similar to the subset simulation method, which is well known in the field of structural reliability, is used to estimate the criterion. The method, which we call BMOO (for Bayesian Multi-Objective Optimization), is compared to state-of-the-art algorithms for single- and multi-objective constrained optimization

    Complete hierarchies of efficient approximations to problems in entanglement theory

    Full text link
    We investigate several problems in entanglement theory from the perspective of convex optimization. This list of problems comprises (A) the decision whether a state is multi-party entangled, (B) the minimization of expectation values of entanglement witnesses with respect to pure product states, (C) the closely related evaluation of the geometric measure of entanglement to quantify pure multi-party entanglement, (D) the test whether states are multi-party entangled on the basis of witnesses based on second moments and on the basis of linear entropic criteria, and (E) the evaluation of instances of maximal output purities of quantum channels. We show that these problems can be formulated as certain optimization problems: as polynomially constrained problems employing polynomials of degree three or less. We then apply very recently established known methods from the theory of semi-definite relaxations to the formulated optimization problems. By this construction we arrive at a hierarchy of efficiently solvable approximations to the solution, approximating the exact solution as closely as desired, in a way that is asymptotically complete. For example, this results in a hierarchy of novel, efficiently decidable sufficient criteria for multi-particle entanglement, such that every entangled state will necessarily be detected in some step of the hierarchy. Finally, we present numerical examples to demonstrate the practical accessibility of this approach.Comment: 14 pages, 3 figures, tiny modifications, version to be published in Physical Review

    Approximation Algorithms for Multi-Criteria Traveling Salesman Problems

    Full text link
    In multi-criteria optimization problems, several objective functions have to be optimized. Since the different objective functions are usually in conflict with each other, one cannot consider only one particular solution as the optimal solution. Instead, the aim is to compute a so-called Pareto curve of solutions. Since Pareto curves cannot be computed efficiently in general, we have to be content with approximations to them. We design a deterministic polynomial-time algorithm for multi-criteria g-metric STSP that computes (min{1 +g, 2g^2/(2g^2 -2g +1)} + eps)-approximate Pareto curves for all 1/2<=g<=1. In particular, we obtain a (2+eps)-approximation for multi-criteria metric STSP. We also present two randomized approximation algorithms for multi-criteria g-metric STSP that achieve approximation ratios of (2g^3 +2g^2)/(3g^2 -2g +1) + eps and (1 +g)/(1 +3g -4g^2) + eps, respectively. Moreover, we present randomized approximation algorithms for multi-criteria g-metric ATSP (ratio 1/2 + g^3/(1 -3g^2) + eps) for g < 1/sqrt(3)), STSP with weights 1 and 2 (ratio 4/3) and ATSP with weights 1 and 2 (ratio 3/2). To do this, we design randomized approximation schemes for multi-criteria cycle cover and graph factor problems.Comment: To appear in Algorithmica. A preliminary version has been presented at the 4th Workshop on Approximation and Online Algorithms (WAOA 2006
    corecore