492,028 research outputs found
Ergonomic Chair Design by Fusing Qualitative and Quantitative Criteria using Interactive Genetic Algorithms
This paper emphasizes the necessity of formally bringing qualitative and
quantitative criteria of ergonomic design together, and provides a novel
complementary design framework with this aim. Within this framework, different
design criteria are viewed as optimization objectives; and design solutions are
iteratively improved through the cooperative efforts of computer and user. The
framework is rooted in multi-objective optimization, genetic algorithms and
interactive user evaluation. Three different algorithms based on the framework
are developed, and tested with an ergonomic chair design problem. The parallel
and multi-objective approaches show promising results in fitness convergence,
design diversity and user satisfaction metrics
A constrained multi-objective surrogate-based optimization algorithm
Surrogate models or metamodels are widely used in the realm of engineering for design optimization to minimize the number of computationally expensive simulations. Most practical problems often have conflicting objectives, which lead to a number of competing solutions which form a Pareto front. Multi-objective surrogate-based constrained optimization algorithms have been proposed in literature, but handling constraints directly is a relatively new research area. Most algorithms proposed to directly deal with multi-objective optimization have been evolutionary algorithms (Multi-Objective Evolutionary Algorithms -MOEAs). MOEAs can handle large design spaces but require a large number of simulations, which might be infeasible in practice, especially if the constraints are expensive. A multi-objective constrained optimization algorithm is presented in this paper which makes use of Kriging models, in conjunction with multi-objective probability of improvement (PoI) and probability of feasibility (PoF) criteria to drive the sample selection process economically. The efficacy of the proposed algorithm is demonstrated on an analytical benchmark function, and the algorithm is then used to solve a microwave filter design optimization problem
Scalarizing cost-effective multiobjective optimization algorithms made possible with kriging
The use of kriging in cost-effective single-objective optimization is well established, and a wide variety of different criteria now exist for selecting design vectors to evaluate in the search for the global minimum. Additionly, a large number of methods exist for transforming a multi-objective optimization problem to a single-objective problem. With these two facts in mind, this paper discusses the range of kriging assisted algorithms which are possible (and which remain to be explored) for cost-effective multi-objective optimization
A Bayesian approach to constrained single- and multi-objective optimization
This article addresses the problem of derivative-free (single- or
multi-objective) optimization subject to multiple inequality constraints. Both
the objective and constraint functions are assumed to be smooth, non-linear and
expensive to evaluate. As a consequence, the number of evaluations that can be
used to carry out the optimization is very limited, as in complex industrial
design optimization problems. The method we propose to overcome this difficulty
has its roots in both the Bayesian and the multi-objective optimization
literatures. More specifically, an extended domination rule is used to handle
objectives and constraints in a unified way, and a corresponding expected
hyper-volume improvement sampling criterion is proposed. This new criterion is
naturally adapted to the search of a feasible point when none is available, and
reduces to existing Bayesian sampling criteria---the classical Expected
Improvement (EI) criterion and some of its constrained/multi-objective
extensions---as soon as at least one feasible point is available. The
calculation and optimization of the criterion are performed using Sequential
Monte Carlo techniques. In particular, an algorithm similar to the subset
simulation method, which is well known in the field of structural reliability,
is used to estimate the criterion. The method, which we call BMOO (for Bayesian
Multi-Objective Optimization), is compared to state-of-the-art algorithms for
single- and multi-objective constrained optimization
Complete hierarchies of efficient approximations to problems in entanglement theory
We investigate several problems in entanglement theory from the perspective
of convex optimization. This list of problems comprises (A) the decision
whether a state is multi-party entangled, (B) the minimization of expectation
values of entanglement witnesses with respect to pure product states, (C) the
closely related evaluation of the geometric measure of entanglement to quantify
pure multi-party entanglement, (D) the test whether states are multi-party
entangled on the basis of witnesses based on second moments and on the basis of
linear entropic criteria, and (E) the evaluation of instances of maximal output
purities of quantum channels. We show that these problems can be formulated as
certain optimization problems: as polynomially constrained problems employing
polynomials of degree three or less. We then apply very recently established
known methods from the theory of semi-definite relaxations to the formulated
optimization problems. By this construction we arrive at a hierarchy of
efficiently solvable approximations to the solution, approximating the exact
solution as closely as desired, in a way that is asymptotically complete. For
example, this results in a hierarchy of novel, efficiently decidable sufficient
criteria for multi-particle entanglement, such that every entangled state will
necessarily be detected in some step of the hierarchy. Finally, we present
numerical examples to demonstrate the practical accessibility of this approach.Comment: 14 pages, 3 figures, tiny modifications, version to be published in
Physical Review
Approximation Algorithms for Multi-Criteria Traveling Salesman Problems
In multi-criteria optimization problems, several objective functions have to
be optimized. Since the different objective functions are usually in conflict
with each other, one cannot consider only one particular solution as the
optimal solution. Instead, the aim is to compute a so-called Pareto curve of
solutions. Since Pareto curves cannot be computed efficiently in general, we
have to be content with approximations to them.
We design a deterministic polynomial-time algorithm for multi-criteria
g-metric STSP that computes (min{1 +g, 2g^2/(2g^2 -2g +1)} + eps)-approximate
Pareto curves for all 1/2<=g<=1. In particular, we obtain a
(2+eps)-approximation for multi-criteria metric STSP. We also present two
randomized approximation algorithms for multi-criteria g-metric STSP that
achieve approximation ratios of (2g^3 +2g^2)/(3g^2 -2g +1) + eps and (1 +g)/(1
+3g -4g^2) + eps, respectively.
Moreover, we present randomized approximation algorithms for multi-criteria
g-metric ATSP (ratio 1/2 + g^3/(1 -3g^2) + eps) for g < 1/sqrt(3)), STSP with
weights 1 and 2 (ratio 4/3) and ATSP with weights 1 and 2 (ratio 3/2). To do
this, we design randomized approximation schemes for multi-criteria cycle cover
and graph factor problems.Comment: To appear in Algorithmica. A preliminary version has been presented
at the 4th Workshop on Approximation and Online Algorithms (WAOA 2006
- …
