285,317 research outputs found

    Approximately Truthful Multi-Agent Optimization Using Cloud-Enforced Joint Differential Privacy

    Full text link
    Multi-agent coordination problems often require agents to exchange state information in order to reach some collective goal, such as agreement on a final state value. In some cases, it is feasible that opportunistic agents may deceptively report false state values for their own benefit, e.g., to claim a larger portion of shared resources. Motivated by such cases, this paper presents a multi-agent coordination framework which disincentivizes opportunistic misreporting of state information. This paper focuses on multi-agent coordination problems that can be stated as nonlinear programs, with non-separable constraints coupling the agents. In this setting, an opportunistic agent may be tempted to skew the problem's constraints in its favor to reduce its local cost, and this is exactly the behavior we seek to disincentivize. The framework presented uses a primal-dual approach wherein the agents compute primal updates and a centralized cloud computer computes dual updates. All computations performed by the cloud are carried out in a way that enforces joint differential privacy, which adds noise in order to dilute any agent's influence upon the value of its cost function in the problem. We show that this dilution deters agents from intentionally misreporting their states to the cloud, and present bounds on the possible cost reduction an agent can attain through misreporting its state. This work extends our earlier work on incorporating ordinary differential privacy into multi-agent optimization, and we show that this work can be modified to provide a disincentivize for misreporting states to the cloud. Numerical results are presented to demonstrate convergence of the optimization algorithm under joint differential privacy.Comment: 17 pages, 3 figure

    Cooperative Epistemic Multi-Agent Planning for Implicit Coordination

    Get PDF
    Epistemic planning can be used for decision making in multi-agent situations with distributed knowledge and capabilities. Recently, Dynamic Epistemic Logic (DEL) has been shown to provide a very natural and expressive framework for epistemic planning. We extend the DEL-based epistemic planning framework to include perspective shifts, allowing us to define new notions of sequential and conditional planning with implicit coordination. With these, it is possible to solve planning tasks with joint goals in a decentralized manner without the agents having to negotiate about and commit to a joint policy at plan time. First we define the central planning notions and sketch the implementation of a planning system built on those notions. Afterwards we provide some case studies in order to evaluate the planner empirically and to show that the concept is useful for multi-agent systems in practice.Comment: In Proceedings M4M9 2017, arXiv:1703.0173

    Multi Site Coordination using a Multi-Agent System

    Get PDF
    A new approach of coordination of decisions in a multi site system is proposed. It is based this approach on a multi-agent concept and on the principle of distributed network of enterprises. For this purpose, each enterprise is defined as autonomous and performs simultaneously at the local and global levels. The basic component of our approach is a so-called Virtual Enterprise Node (VEN), where the enterprise network is represented as a set of tiers (like in a product breakdown structure). Within the network, each partner constitutes a VEN, which is in contact with several customers and suppliers. Exchanges between the VENs ensure the autonomy of decision, and guarantiee the consistency of information and material flows. Only two complementary VEN agents are necessary: one for external interactions, the Negotiator Agent (NA) and one for the planning of internal decisions, the Planner Agent (PA). If supply problems occur in the network, two other agents are defined: the Tier Negotiator Agent (TNA) working at the tier level only and the Supply Chain Mediator Agent (SCMA) working at the level of the enterprise network. These two agents are only active when the perturbation occurs. Otherwise, the VENs process the flow of information alone. With this new approach, managing enterprise network becomes much more transparent and looks like managing a simple enterprise in the network. The use of a Multi-Agent System (MAS) allows physical distribution of the decisional system, and procures a heterarchical organization structure with a decentralized control that guaranties the autonomy of each entity and the flexibility of the network

    Cloud-Based Optimization: A Quasi-Decentralized Approach to Multi-Agent Coordination

    Full text link
    New architectures and algorithms are needed to reflect the mixture of local and global information that is available as multi-agent systems connect over the cloud. We present a novel architecture for multi-agent coordination where the cloud is assumed to be able to gather information from all agents, perform centralized computations, and disseminate the results in an intermittent manner. This architecture is used to solve a multi-agent optimization problem in which each agent has a local objective function unknown to the other agents and in which the agents are collectively subject to global inequality constraints. Leveraging the cloud, a dual problem is formulated and solved by finding a saddle point of the associated Lagrangian.Comment: 7 pages, 3 figure

    Efficient Order and Resource Coordination in Mass Customization

    Get PDF
    Mass customization manufacturing systems require a high level of adaptability and flexibility in production – especially in production planning and control. In particular, the Coordination of orders and resources is critical, because of the high volatility and the make to order principle. Multi-agent systems theoretically provide the required features to handle that complexity, but a lack of informational integration and organizational incompatibilities lead to low applicability. The application of Internet Technology provides the necessary interoperability and organizational alignment to support an overall application of multi-agent systems in mass customization.Mass Customization; Internet Technologies; Multi Agent Systems; Production Planning and Control
    corecore