3,698,738 research outputs found
Screening for Parkinson’s Disease with Response Time Barriers: A Pilot Study
Background: Although significant response time deficits (both reaction time and movement time) have been identified in numerous studies of patients with Parkinson’s disease (PD), few attempts have been made to evaluate the use of these measures in screening for PD.
Methods: Receiver operator characteristic curves were used to identify cutoff scores for a unitweighted composite of two choice response tasks in a sample of 40 patients and 40 healthy participants. These scores were then cross-validated in an independent sample of 20 patients and 20 healthy participants.
Results: The unit-weighted movement time composite demonstrated high sensitivity (90%) and specificity (90%) in the identification of PD. Movement time was also significantly correlated (r = 0.59, p \u3c 0.025) with the motor score of the Unified Parkinson’s Disease Rating Scale (UPDRS).
Conclusions: Measures of chronometric speed, assessed without the use of biomechanically complex movements, have a potential role in screening for PD. Furthermore, the significant correlation between movement time and UPDRS motor score suggests that movement time may be useful in the quantification of PD severity
The effect of distance on reaction time in aiming movements
Target distance affects movement duration in aiming tasks but its effect on reaction time (RT) is poorly documented. RT is a function of both preparation and initiation. Experiment 1 pre-cued movement (allowing advanced preparation) and found no influence of distance on RT. Thus, target distance does not affect initiation time. Experiment 2 removed pre-cue information and found that preparing a movement of increased distance lengthens RT. Experiment 3 explored movements to targets of cued size at non-cued distances and found size altered peak speed and movement duration but RT was influenced by distance alone. Thus, amplitude influences preparation time (for reasons other than altered duration) but not initiation time. We hypothesise that the RT distance effect might be due to the increased number of possible trajectories associated with further targets: a hypothesis that can be tested in future experiments
New perspectives in human movement variability
Movement variability is defined as the normal variations that occur in motor performance across multiple repetitions of a task.2 Bernstein1 described movement variability quite eloquently as ‘‘repetition without repetition.’’ Traditionally, movement variability has been linked to noise and error, being considered to be random and independent. This theoretical approach blends well with traditional statistical and assessment methods of movement variability that assume randomness and independence of observations. However, numerous studies have indicated that when movement is observed over time variations are closely related with each other neither being random nor independent. Practically, traditional methods can mask the temporal structure of movement variability and contain little information about how movement changes over time
On the Assessment of Stability and Patterning of Speech Movements
Speech requires the control of complex movements of orofacial structures to produce dynamic variations in the vocal tract transfer function. The nature of the underlying motor control processes has traditionally been investigated by employing measures of articulatory movements, including movement amplitude, velocity, and duration, at selected points in time. An alternative approach, first used in the study of limb motion, is to examine the entire movement trajectory over time. A new approach to speech movement trajectory analysis was introduced in earlier work from this laboratory. In this method, trajectories from multiple movement sequences are time- and amplitude-normalized, and the STI (spatiotemporal index) is computed to capture the degree of convergence of a set of trajectories onto a single, underlying movement template. This research note describes the rationale for this analysis and provides a detailed description of the signal processing involved. Alternative interpolation procedures for time-normalization of kinematic data are also considered
Human movement : the transition of people through space and time
The main goal of this creative project was to study the human figure and its relationship to its environment. In the process of exploring this idea, several key concepts became the focal point. First, the element of time was studied. The primary emphasis was the relationship between human figures and the passage of time. Second, working with figures on white backgrounds focused on each figure’s visual characteristics. Last, addressing elements of abstraction helped to control the mood of each piece. In terms of subject matter, everyday activities were the focus of the project.
Every day we subject ourselves to routine behaviors, to which we eventually become desensitized. In this creative work these mundane activities are addressed in order to uncover unique qualities in the visual environments that often are overlooked. A variety of techniques derived from traditional processes were developed to explore these concepts, including embedding, paint carving, and encasing. An exploration of common imagery utilizing photography, along with visual references from various artists, were used to inform the processes developed for this project.Department of ArtThesis (M.A.
Online Movement Correlation of Wireless Sensor Nodes
Sensor nodes can autonomously form ad-hoc groups based on their common context. We propose a solution for grouping sensor nodes attached on the same vehicles on wheels. The nodes periodically receive the movement data from their neighbours and calculate the correlation coefficients over a time history. A high correlation coefficient implies that the nodes are moving together. We demonstrate the algorithm using two types of movement sensors: tilt switches and MEMS accelerometers. We place the nodes on two wirelessly controlled toy cars, and we observe in real-time the group membership via the LED colours of the nodes. In addition, a graphical user interface running on the base station shows the movement signals over a recent time history, the latest sampled data, the correlation between each two nodes and the group membership
A study of frequency and pulses for stepper motor controller system by using programmable logic controller
The stepper motor movement process produced different frequency and pulses. This research explained about the frequency and pulses for the stepper motor movement by using Programmable Logic Controller (PLC) as research method. The study was done to find the suitable frequency and pulses for stepper motor movement by developing a prototype stepper motor controller system. The pulse frequency used did not affected the distance of moving load in the stepper motor operations. The increasing number of pulse frequency only will affect the time taken for the stepper motor to complete its operations. The result showed that number of pulse frequency at high operation was 5000 Hz. Pulse number reacted as a manipulated variable that affected both factor which is time taken of stepper motor operation and the distance of moving load
- …
