289,136 research outputs found

    Restoring Retinal Function in a Mouse Model of Hereditary Blindness

    Get PDF
    Moore discusses a new study showing rescue of photoreceptor function using gene and drug therapies in a mouse model of Leber congenital amaurosis

    Neuroprotection in a Novel Mouse Model of Multiple Sclerosis

    Get PDF
    The authors acknowledge the support of the Barts and the London Charity, the Multiple Sclerosis Society of Great Britain and Northern Ireland, the National Multiple Sclerosis Society, USA, notably the National Centre for the Replacement, Refinement & Reduction of Animals in Research, and the Wellcome Trust (grant no. 092539 to ZA). The siRNA was provided by Quark Pharmaceuticals. The funders and Quark Pharmaceuticals had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    A novel therapeutic strategy for pancreatic neoplasia using a novel RNAi platform targeting PDX-1

    Get PDF
    Bi-functional shRNA (bi-shRNA), a novel RNA interference (RNAi) effector platform targeting PDX-1 utilizing a systemic DOTAP-Cholesterol delivery vehicle, was studied in three mouse models of progressive pancreatic neoplasia. Species-specific bi-functional PDX-1 shRNA (bi-shRNAPDX-1) lipoplexes inhibited insulin expression and secretion while also substantially inhibiting proliferation of mouse and human cell lines via disruption of cell cycle proteins in vitro. Three cycles of either bi-shRNA<sup>mousePDX-1</sup> or shRNA<sup>mousePDX-1</sup> lipoplexes administered intravenously prevented death from hyperinsulinemia and hypoglycemia in a lethal insulinoma mouse model. Three cycles of shRNA<sup>mousePDX-1</sup> lipoplexes reversed hyperinsulinemia and hypoglycemia in an immune-competent mouse model of pancreatic neoplasia. Moreover, three cycles of the bi-shRNA<sup>humanPDX-1</sup> lipoplexes resulted in near complete ablation of tumor volume and considerably improved survival in a human PANC-1 implanted SCID-mouse model. Human pancreatic neoplasia specimens also stained strongly for PDX-1 expression. Together, these data support the clinical development of a novel therapeutic strategy using systemic bi-shRNA<sup>PDX-1</sup> lipoplexes against pancreatic neoplasia

    Amanda Hazy Wins Outstanding Thesis Award for Spring 2015

    Get PDF
    Amanda Hazy wins the Outstanding Thesis Award for Spring 2015 for her thesis, “Gene Expression and Alzheimer\u27s Disease: Evaluation of Gene Expression Patterns in Brain and Blood for an Alzheimer\u27s Disease Mouse Model.

    A Upf3b-mutant mouse model with behavioral and neurogenesis defects.

    Get PDF
    Nonsense-mediated RNA decay (NMD) is a highly conserved and selective RNA degradation pathway that acts on RNAs terminating their reading frames in specific contexts. NMD is regulated in a tissue-specific and developmentally controlled manner, raising the possibility that it influences developmental events. Indeed, loss or depletion of NMD factors have been shown to disrupt developmental events in organisms spanning the phylogenetic scale. In humans, mutations in the NMD factor gene, UPF3B, cause intellectual disability (ID) and are strongly associated with autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD) and schizophrenia (SCZ). Here, we report the generation and characterization of mice harboring a null Upf3b allele. These Upf3b-null mice exhibit deficits in fear-conditioned learning, but not spatial learning. Upf3b-null mice also have a profound defect in prepulse inhibition (PPI), a measure of sensorimotor gating commonly deficient in individuals with SCZ and other brain disorders. Consistent with both their PPI and learning defects, cortical pyramidal neurons from Upf3b-null mice display deficient dendritic spine maturation in vivo. In addition, neural stem cells from Upf3b-null mice have impaired ability to undergo differentiation and require prolonged culture to give rise to functional neurons with electrical activity. RNA sequencing (RNAseq) analysis of the frontal cortex identified UPF3B-regulated RNAs, including direct NMD target transcripts encoding proteins with known functions in neural differentiation, maturation and disease. We suggest Upf3b-null mice serve as a novel model system to decipher cellular and molecular defects underlying ID and neurodevelopmental disorders

    Dopamine dysregulation in a mouse model of paroxysmal nonkinesigenic dyskinesia.

    Get PDF
    Paroxysmal nonkinesigenic dyskinesia (PNKD) is an autosomal dominant episodic movement disorder. Patients have episodes that last 1 to 4 hours and are precipitated by alcohol, coffee, and stress. Previous research has shown that mutations in an uncharacterized gene on chromosome 2q33-q35 (which is termed PNKD) are responsible for PNKD. Here, we report the generation of antibodies specific for the PNKD protein and show that it is widely expressed in the mouse brain, exclusively in neurons. One PNKD isoform is a membrane-associated protein. Transgenic mice carrying mutations in the mouse Pnkd locus equivalent to those found in patients with PNKD recapitulated the human PNKD phenotype. Staining for c-fos demonstrated that administration of alcohol or caffeine induced neuronal activity in the basal ganglia in these mice. They also showed nigrostriatal neurotransmission deficits that were manifested by reduced extracellular dopamine levels in the striatum and a proportional increase of dopamine release in response to caffeine and ethanol treatment. These findings support the hypothesis that the PNKD protein functions to modulate striatal neuro-transmitter release in response to stress and other precipitating factors
    • …
    corecore