172,083 research outputs found

    A Framework for Evaluating Motion Segmentation Algorithms

    Full text link
    There have been many proposals for algorithms segmenting human whole-body motion in the literature. However, the wide range of use cases, datasets, and quality measures that were used for the evaluation render the comparison of algorithms challenging. In this paper, we introduce a framework that puts motion segmentation algorithms on a unified testing ground and provides a possibility to allow comparing them. The testing ground features both a set of quality measures known from the literature and a novel approach tailored to the evaluation of motion segmentation algorithms, termed Integrated Kernel approach. Datasets of motion recordings, provided with a ground truth, are included as well. They are labelled in a new way, which hierarchically organises the ground truth, to cover different use cases that segmentation algorithms can possess. The framework and datasets are publicly available and are intended to represent a service for the community regarding the comparison and evaluation of existing and new motion segmentation algorithms

    A Multi-cut Formulation for Joint Segmentation and Tracking of Multiple Objects

    Full text link
    Recently, Minimum Cost Multicut Formulations have been proposed and proven to be successful in both motion trajectory segmentation and multi-target tracking scenarios. Both tasks benefit from decomposing a graphical model into an optimal number of connected components based on attractive and repulsive pairwise terms. The two tasks are formulated on different levels of granularity and, accordingly, leverage mostly local information for motion segmentation and mostly high-level information for multi-target tracking. In this paper we argue that point trajectories and their local relationships can contribute to the high-level task of multi-target tracking and also argue that high-level cues from object detection and tracking are helpful to solve motion segmentation. We propose a joint graphical model for point trajectories and object detections whose Multicuts are solutions to motion segmentation {\it and} multi-target tracking problems at once. Results on the FBMS59 motion segmentation benchmark as well as on pedestrian tracking sequences from the 2D MOT 2015 benchmark demonstrate the promise of this joint approach

    Motion segmentation by consensus

    No full text
    We present a method for merging multiple partitions into a single partition, by minimising the ratio of pairwise agreements and contradictions between the equivalence relations corresponding to the partitions. The number of equivalence classes is determined automatically. This method is advantageous when merging segmentations obtained independently. We propose using this consensus approach to merge segmentations of features tracked on video. Each segmentation is obtained by clustering on the basis of mean velocity during a particular time interva

    Event-Based Motion Segmentation by Motion Compensation

    Full text link
    In contrast to traditional cameras, whose pixels have a common exposure time, event-based cameras are novel bio-inspired sensors whose pixels work independently and asynchronously output intensity changes (called "events"), with microsecond resolution. Since events are caused by the apparent motion of objects, event-based cameras sample visual information based on the scene dynamics and are, therefore, a more natural fit than traditional cameras to acquire motion, especially at high speeds, where traditional cameras suffer from motion blur. However, distinguishing between events caused by different moving objects and by the camera's ego-motion is a challenging task. We present the first per-event segmentation method for splitting a scene into independently moving objects. Our method jointly estimates the event-object associations (i.e., segmentation) and the motion parameters of the objects (or the background) by maximization of an objective function, which builds upon recent results on event-based motion-compensation. We provide a thorough evaluation of our method on a public dataset, outperforming the state-of-the-art by as much as 10%. We also show the first quantitative evaluation of a segmentation algorithm for event cameras, yielding around 90% accuracy at 4 pixels relative displacement.Comment: When viewed in Acrobat Reader, several of the figures animate. Video: https://youtu.be/0q6ap_OSBA
    corecore