205,384 research outputs found
Evaluation of denoising strategies to address motion-correlated artifacts in resting-state functional magnetic resonance imaging data from the human connectome roject
Like all resting-state functional connectivity data, the data from the Human Connectome Project (HCP) are adversely affected by structured noise artifacts arising from head motion and physiological processes. Functional connectivity estimates (Pearson's correlation coefficients) were inflated for high-motion time points and for high-motion participants. This inflation occurred across the brain, suggesting the presence of globally distributed artifacts. The degree of inflation was further increased for connections between nearby regions compared with distant regions, suggesting the presence of distance-dependent spatially specific artifacts. We evaluated several denoising methods: censoring high-motion time points, motion regression, the FMRIB independent component analysis-based X-noiseifier (FIX), and mean grayordinate time series regression (MGTR; as a proxy for global signal regression). The results suggest that FIX denoising reduced both types of artifacts, but left substantial global artifacts behind. MGTR significantly reduced global artifacts, but left substantial spatially specific artifacts behind. Censoring high-motion time points resulted in a small reduction of distance-dependent and global artifacts, eliminating neither type. All denoising strategies left differences between high- and low-motion participants, but only MGTR substantially reduced those differences. Ultimately, functional connectivity estimates from HCP data showed spatially specific and globally distributed artifacts, and the most effective approach to address both types of motion-correlated artifacts was a combination of FIX and MGTR
Retrospective correction of Rigid and Non-Rigid MR motion artifacts using GANs
Motion artifacts are a primary source of magnetic resonance (MR) image
quality deterioration with strong repercussions on diagnostic performance.
Currently, MR motion correction is carried out either prospectively, with the
help of motion tracking systems, or retrospectively by mainly utilizing
computationally expensive iterative algorithms. In this paper, we utilize a new
adversarial framework, titled MedGAN, for the joint retrospective correction of
rigid and non-rigid motion artifacts in different body regions and without the
need for a reference image. MedGAN utilizes a unique combination of
non-adversarial losses and a new generator architecture to capture the textures
and fine-detailed structures of the desired artifact-free MR images.
Quantitative and qualitative comparisons with other adversarial techniques have
illustrated the proposed model performance.Comment: 5 pages, 2 figures, under review for the IEEE International Symposium
for Biomedical Image
Eliminating Motion Artifacts in PPG
[[conferencetype]]國際[[conferencedate]]20150606~20150608[[booktype]]電子版[[iscallforpapers]]Y[[conferencelocation]]台灣/台北 國立臺灣科技大
Practical aspects of a data-driven motion correction approach for brain SPECT
Patient motion can cause image artifacts in single photon emission computed tomography despite restraining measures. Data-driven detection and correction of motion can be achieved by comparison of acquired data with the forward projections. This enables the brain locations to be estimated and data to be correctly incorporated in a three-dimensional (3-D) reconstruction algorithm. Digital and physical phantom experiments were performed to explore practical aspects of this approach. Noisy simulation data modeling multiple 3-D patient head movements were constructed by projecting the digital Hoffman brain phantom at various orientations. Hoffman physical phantom data incorporating deliberate movements were also gathered. Motion correction was applied to these data using various regimes to determine the importance of attenuation and successive iterations. Studies were assessed visually for artifact reduction, and analyzed quantitatively via a mean registration error (MRE) and mean square difference measure (MSD). Artifacts and distortion in the motion corrupted data were reduced to a large extent by application of this algorithm. MRE values were mostly well within 1 pixel (4.4 mm) for the simulated data. Significant MSD improvements (>2) were common. Inclusion of attenuation was unnecessary to accurately estimate motion, doubling the efficiency and simplifying implementation. Moreover, most motion-related errors were removed using a single iteration. The improvement for the physical phantom data was smaller, though this may be due to object symmetry. In conclusion, these results provide the basis of an implementation protocol for clinical validation of the technique
Automated quantification and evaluation of motion artifact on coronary CT angiography images
Abstract Purpose
This study developed and validated a Motion Artifact Quantification algorithm to automatically quantify the severity of motion artifacts on coronary computed tomography angiography (CCTA) images. The algorithm was then used to develop a Motion IQ Decision method to automatically identify whether a CCTA dataset is of sufficient diagnostic image quality or requires further correction. Method
The developed Motion Artifact Quantification algorithm includes steps to identify the right coronary artery (RCA) regions of interest (ROIs), segment vessel and shading artifacts, and to calculate the motion artifact score (MAS) metric. The segmentation algorithms were verified against ground‐truth manual segmentations. The segmentation algorithms were also verified by comparing and analyzing the MAS calculated from ground‐truth segmentations and the algorithm‐generated segmentations. The Motion IQ Decision algorithm first identifies slices with unsatisfactory image quality using a MAS threshold. The algorithm then uses an artifact‐length threshold to determine whether the degraded vessel segment is large enough to cause the dataset to be nondiagnostic. An observer study on 30 clinical CCTA datasets was performed to obtain the ground‐truth decisions of whether the datasets were of sufficient image quality. A five‐fold cross‐validation was used to identify the thresholds and to evaluate the Motion IQ Decision algorithm. Results
The automated segmentation algorithms in the Motion Artifact Quantification algorithm resulted in Dice coefficients of 0.84 for the segmented vessel regions and 0.75 for the segmented shading artifact regions. The MAS calculated using the automated algorithm was within 10% of the values obtained using ground‐truth segmentations. The MAS threshold and artifact‐length thresholds were determined by the ROC analysis to be 0.6 and 6.25 mm by all folds. The Motion IQ Decision algorithm demonstrated 100% sensitivity, 66.7% ± 27.9% specificity, and a total accuracy of 86.7% ± 12.5% for identifying datasets in which the RCA required correction. The Motion IQ Decision algorithm demonstrated 91.3% sensitivity, 71.4% specificity, and a total accuracy of 86.7% for identifying CCTA datasets that need correction for any of the three main vessels. Conclusion
The Motion Artifact Quantification algorithm calculated accurate
- …
