354,053 research outputs found
Parasite motility is critical for virulence of African trypanosomes.
African trypanosomes, Trypanosoma brucei spp., are lethal pathogens that cause substantial human suffering and limit economic development in some of the world's most impoverished regions. The name Trypanosoma ("auger cell") derives from the parasite's distinctive motility, which is driven by a single flagellum. However, despite decades of study, a requirement for trypanosome motility in mammalian host infection has not been established. LC1 is a conserved dynein subunit required for flagellar motility. Prior studies with a conditional RNAi-based LC1 mutant, RNAi-K/R, revealed that parasites with defective motility could infect mice. However, RNAi-K/R retained residual expression of wild-type LC1 and residual motility, thus precluding definitive interpretation. To overcome these limitations, here we generate constitutive mutants in which both LC1 alleles are replaced with mutant versions. These double knock-in mutants show reduced motility compared to RNAi-K/R and are viable in culture, but are unable to maintain bloodstream infection in mice. The virulence defect is independent of infection route but dependent on an intact host immune system. By comparing different mutants, we also reveal a critical dependence on the LC1 N-terminus for motility and virulence. Our findings demonstrate that trypanosome motility is critical for establishment and maintenance of bloodstream infection, implicating dynein-dependent flagellar motility as a potential drug target
Activation of Ciona sperm motility: phosphorylation of dynein polypeptides and effects of a tyrosine kinase inhibitor
A high molecular mass dynein ATPase polypeptide and a 18–20 kDa dynein light chain of Ciona sperm flagella are phosphorylated during in vivo activation of motility or in vitro activation of motility by incubation with cyclic AMP. A similar level of phosphorylation of these proteins is obtained by incubation of washed, demembranated spermatozoa with catalytic subunit of cyclic AMP-dependent protein kinase, under conditions where there is no activation of motility until a supernatant component is added. Therefore, phosphorylation of these dynein polypeptides is not sufficient for activation of motility. Activation of motility in vitro by incubation with cyclic AMP can be completely inhibited by a random copolymer of glutamate and tyrosine that inhibits tyrosine kinase activity. Under these conditions, much of the protein phosphorylation associated with activation of motility is also inhibited. These new results suggest that regulation of motility of these spermatozoa may involve a multicomponent kinase cascade rather than a simple phosphorylation of a protein ‘switch’ by the cyclic AMP-dependent kinase. A 53 kDa axonemal phosphoprotein band, identified as band M1, shows the strongest correlation with activation of motility in these experiments
Frictional Active Brownian Particles
Frictional forces affect the rheology of hard-sphere colloids, at high shear
rate. Here we demonstrate, via numerical simulations, that they also affect the
dynamics of active Brownian particles, and their motility induced phase
separation. Frictional forces increase the angular diffusivity of the
particles, in the dilute phase, and prevent colliding particles from resolving
their collision by sliding one past to the other. This leads to qualitatively
changes of motility-induced phase diagram in the volume-fraction motility
plane. While frictionless systems become unstable towards phase separation as
the motility increases only if their volume fraction overcomes a threshold,
frictional system become unstable regardless of their volume fraction. These
results suggest the possibility of controlling the motility induced phase
diagram by tuning the roughness of the particles
Clinically relevant enhancement of human sperm motility using compounds with reported phosphodiesterase inhibitor activity
STUDY QUESTION: Can we identify compound(s) with reported phosphodiesterase inhibitor (PDEI) activity that could be added to human spermatozoa in vitro to enhance their motility without compromising other sperm functions? SUMMARY ANSWER: We have identified several compounds that produce robust and effective stimulation of sperm motility and, importantly, have a positive response on patient samples. WHAT IS KNOWN ALREADY: For >20 years, the use of non-selective PDEIs, such as pentoxifylline, has been known to influence the motility of human spermatozoa; however, conflicting results have been obtained. It is now clear that human sperm express several different phosphodiesterases and these are compartmentalized at different regions of the cells. By using type-specific PDEIs, differential modulation of sperm motility may be achieved without adversely affecting other functions such as the acrosome reaction (AR). STUDY DESIGN, SIZE, DURATION: This was a basic medical research study examining sperm samples from normozoospermic donors and subfertile patients attending the Assisted Conception Unit (ACU), Ninewells Hospital Dundee for diagnostic semen analysis, IVF and ICSI. Phase 1 screened 43 commercially available compounds with reported PDEI activity to identify lead compounds that stimulate sperm motility. Samples were exposed (20 min) to three concentrations (1, 10 and 100 µM) of compound, and selected candidates (n = 6) progressed to Phase 2, which provided a more comprehensive assessment using a battery of in vitro sperm function tests. PARTICIPANTS/MATERIALS, SETTING, METHODS: All healthy donors and subfertile patients were recruited at the Medical Research Institute, University of Dundee and ACU, Ninewells Hospital Dundee (ethical approval 08/S1402/6). In Phase 1, poor motility cells recovered from the 40% interface of the discontinuous density gradient were used as surrogates for patient samples. Pooled samples from three to four different donors were utilized in order to reduce variability and increase the number of cells available for simultaneous examination of multiple compounds. During Phase 2 testing, semen samples from 23 patients attending for either routine diagnostic andrology assessment or IVF/ICSI were prepared and exposed to selected compounds. Additionally, 48 aliquots of prepared samples, surplus to clinical use, were examined from IVF (n = 32) and ICSI (n = 16) patients to further determine the effects of selected compounds under clinical conditions of treatment. Effects of compounds on sperm motility were assessed by computer-assisted sperm analysis. A modified Kremer test using methyl cellulose was used to assess sperm functional ability to penetrate into viscous media. Sperm acrosome integrity and induction of apoptosis were assessed using the acrosomal content marker PSA-FITC and annexin V kit, respectively. MAIN RESULTS AND THE ROLE OF CHANCE: In Phase 1, six compounds were found to have a strong effect on poor motility samples with a magnitude of response of ≥60% increase in percentage total motility. Under capacitating and non-capacitating conditions, these compounds significantly (P ≤ 0.05) increased the percentage of total and progressive motility. Furthermore, these compounds enhanced penetration into a cervical mucus substitute (P ≤ 0.05). Finally, the AR was not significantly induced and these compounds did not significantly increase the externalization of phosphatidylserine (P = 0.6, respectively). In general, the six compounds maintained the stimulation of motility over long periods of time (180 min) and their effects were still observed after their removal. In examinations of clinical samples, there was a general observation of a more significant stimulation of sperm motility in samples with lower baseline motility. In ICSI samples, compounds #26, #37 and #38 were the most effective at significantly increasing total motility (88, 81 and 79% of samples, respectively) and progressive motility (94, 93 and 81% of samples, respectively). In conclusion, using a two-phased drug discovery screening approach including the examination of clinical samples, 3/43 compounds were identified as promising candidates for further study. LIMITATIONS, REASONS FOR CAUTION: This is an in vitro study and caution must be taken when extrapolating the results. Data for patients were from one assessment and thus the robustness of responses needs to be established. The n values for ICSI samples were relatively small. WIDER IMPLICATIONS OF THE FINDINGS: We have systematically screened and identified several compounds that have robust and effective stimulation (i.e. functional significance with longevity and no toxicity) of total and progressive motility under clinical conditions of treatment. These compounds could be clinical candidates with possibilities in terms of assisted reproductive technology options for current or future patients affected by asthenozoospermia or oligoasthenozoospermia
Spontaneous symmetry breaking in active droplets provides a generic route to motility
We explore a generic mechanism whereby a droplet of active matter acquires
motility by the spontaneous breakdown of a discrete symmetry. The model we
study offers a simple representation of a "cell extract" comprising, e.g., a
droplet of actomyosin solution. (Such extracts are used experimentally to model
the cytoskeleton.) Actomyosin is an active gel whose polarity describes the
mean sense of alignment of actin fibres. In the absence of polymerization and
depolymerization processes ('treadmilling'), the gel's dynamics arises solely
from the contractile motion of myosin motors; this should be unchanged when
polarity is inverted. Our results suggest that motility can arise in the
absence of treadmilling, by spontaneous symmetry breaking (SSB) of polarity
inversion symmetry. Adapting our model to wall-bound cells in two dimensions,
we find that as wall friction is reduced, treadmilling-induced motility falls
but SSB-mediated motility rises. The latter might therefore be crucial in three
dimensions where frictional forces are likely to be modest. At a supra-cellular
level, the same generic mechanism can impart motility to aggregates of
non-motile but active bacteria; we show that SSB in this (extensile) case leads
generically to rotational as well as translational motion.Comment: 13 pages, 8 figures, 1 tabl
- …
