458,539 research outputs found

    Chart-driven Connectionist Categorial Parsing of Spoken Korean

    Full text link
    While most of the speech and natural language systems which were developed for English and other Indo-European languages neglect the morphological processing and integrate speech and natural language at the word level, for the agglutinative languages such as Korean and Japanese, the morphological processing plays a major role in the language processing since these languages have very complex morphological phenomena and relatively simple syntactic functionality. Obviously degenerated morphological processing limits the usable vocabulary size for the system and word-level dictionary results in exponential explosion in the number of dictionary entries. For the agglutinative languages, we need sub-word level integration which leaves rooms for general morphological processing. In this paper, we developed a phoneme-level integration model of speech and linguistic processings through general morphological analysis for agglutinative languages and a efficient parsing scheme for that integration. Korean is modeled lexically based on the categorial grammar formalism with unordered argument and suppressed category extensions, and chart-driven connectionist parsing method is introduced.Comment: 6 pages, Postscript file, Proceedings of ICCPOL'9

    An implementation of Apertium based Assamese morphological analyzer

    Full text link
    Morphological Analysis is an important branch of linguistics for any Natural Language Processing Technology. Morphology studies the word structure and formation of word of a language. In current scenario of NLP research, morphological analysis techniques have become more popular day by day. For processing any language, morphology of the word should be first analyzed. Assamese language contains very complex morphological structure. In our work we have used Apertium based Finite-State-Transducers for developing morphological analyzer for Assamese Language with some limited domain and we get 72.7% accurac

    SKOPE: A connectionist/symbolic architecture of spoken Korean processing

    Full text link
    Spoken language processing requires speech and natural language integration. Moreover, spoken Korean calls for unique processing methodology due to its linguistic characteristics. This paper presents SKOPE, a connectionist/symbolic spoken Korean processing engine, which emphasizes that: 1) connectionist and symbolic techniques must be selectively applied according to their relative strength and weakness, and 2) the linguistic characteristics of Korean must be fully considered for phoneme recognition, speech and language integration, and morphological/syntactic processing. The design and implementation of SKOPE demonstrates how connectionist/symbolic hybrid architectures can be constructed for spoken agglutinative language processing. Also SKOPE presents many novel ideas for speech and language processing. The phoneme recognition, morphological analysis, and syntactic analysis experiments show that SKOPE is a viable approach for the spoken Korean processing.Comment: 8 pages, latex, use aaai.sty & aaai.bst, bibfile: nlpsp.bib, to be presented at IJCAI95 workshops on new approaches to learning for natural language processin

    Morphological paradigms in language processing and language disorders

    Get PDF
    We present results from two cross-modal morphological priming experiments investigating regular person and number inflection on finite verbs in German. We found asymmetries in the priming patterns between different affixes that can be predicted from the structure of the paradigm. We also report data from language disorders which indicate that inflectional errors produced by language-impaired adults and children tend to occur within a given paradigm dimension, rather than randomly across the paradigm. We conclude that morphological paradigms are used by the human language processor and can be systematically affected in language disorders

    A broad-coverage distributed connectionist model of visual word recognition

    Get PDF
    In this study we describe a distributed connectionist model of morphological processing, covering a realistically sized sample of the English language. The purpose of this model is to explore how effects of discrete, hierarchically structured morphological paradigms, can arise as a result of the statistical sub-regularities in the mapping between word forms and word meanings. We present a model that learns to produce at its output a realistic semantic representation of a word, on presentation of a distributed representation of its orthography. After training, in three experiments, we compare the outputs of the model with the lexical decision latencies for large sets of English nouns and verbs. We show that the model has developed detailed representations of morphological structure, giving rise to effects analogous to those observed in visual lexical decision experiments. In addition, we show how the association between word form and word meaning also give rise to recently reported differences between regular and irregular verbs, even in their completely regular present-tense forms. We interpret these results as underlining the key importance for lexical processing of the statistical regularities in the mappings between form and meaning

    Morphological Analysis as Classification: an Inductive-Learning Approach

    Full text link
    Morphological analysis is an important subtask in text-to-speech conversion, hyphenation, and other language engineering tasks. The traditional approach to performing morphological analysis is to combine a morpheme lexicon, sets of (linguistic) rules, and heuristics to find a most probable analysis. In contrast we present an inductive learning approach in which morphological analysis is reformulated as a segmentation task. We report on a number of experiments in which five inductive learning algorithms are applied to three variations of the task of morphological analysis. Results show (i) that the generalisation performance of the algorithms is good, and (ii) that the lazy learning algorithm IB1-IG performs best on all three tasks. We conclude that lazy learning of morphological analysis as a classification task is indeed a viable approach; moreover, it has the strong advantages over the traditional approach of avoiding the knowledge-acquisition bottleneck, being fast and deterministic in learning and processing, and being language-independent.Comment: 11 pages, 5 encapsulated postscript figures, uses non-standard NeMLaP proceedings style nemlap.sty; inputs ipamacs (international phonetic alphabet) and epsf macro
    corecore