458,539 research outputs found
Chart-driven Connectionist Categorial Parsing of Spoken Korean
While most of the speech and natural language systems which were developed
for English and other Indo-European languages neglect the morphological
processing and integrate speech and natural language at the word level, for the
agglutinative languages such as Korean and Japanese, the morphological
processing plays a major role in the language processing since these languages
have very complex morphological phenomena and relatively simple syntactic
functionality. Obviously degenerated morphological processing limits the usable
vocabulary size for the system and word-level dictionary results in exponential
explosion in the number of dictionary entries. For the agglutinative languages,
we need sub-word level integration which leaves rooms for general morphological
processing. In this paper, we developed a phoneme-level integration model of
speech and linguistic processings through general morphological analysis for
agglutinative languages and a efficient parsing scheme for that integration.
Korean is modeled lexically based on the categorial grammar formalism with
unordered argument and suppressed category extensions, and chart-driven
connectionist parsing method is introduced.Comment: 6 pages, Postscript file, Proceedings of ICCPOL'9
An implementation of Apertium based Assamese morphological analyzer
Morphological Analysis is an important branch of linguistics for any Natural
Language Processing Technology. Morphology studies the word structure and
formation of word of a language. In current scenario of NLP research,
morphological analysis techniques have become more popular day by day. For
processing any language, morphology of the word should be first analyzed.
Assamese language contains very complex morphological structure. In our work we
have used Apertium based Finite-State-Transducers for developing morphological
analyzer for Assamese Language with some limited domain and we get 72.7%
accurac
SKOPE: A connectionist/symbolic architecture of spoken Korean processing
Spoken language processing requires speech and natural language integration.
Moreover, spoken Korean calls for unique processing methodology due to its
linguistic characteristics. This paper presents SKOPE, a connectionist/symbolic
spoken Korean processing engine, which emphasizes that: 1) connectionist and
symbolic techniques must be selectively applied according to their relative
strength and weakness, and 2) the linguistic characteristics of Korean must be
fully considered for phoneme recognition, speech and language integration, and
morphological/syntactic processing. The design and implementation of SKOPE
demonstrates how connectionist/symbolic hybrid architectures can be constructed
for spoken agglutinative language processing. Also SKOPE presents many novel
ideas for speech and language processing. The phoneme recognition,
morphological analysis, and syntactic analysis experiments show that SKOPE is a
viable approach for the spoken Korean processing.Comment: 8 pages, latex, use aaai.sty & aaai.bst, bibfile: nlpsp.bib, to be
presented at IJCAI95 workshops on new approaches to learning for natural
language processin
Morphological paradigms in language processing and language disorders
We present results from two cross-modal morphological priming experiments investigating regular person and number inflection on finite verbs in German. We found asymmetries in the priming patterns between different affixes that can be predicted from the structure of the paradigm. We also report data from language disorders which indicate that inflectional errors produced by language-impaired adults and children tend to occur within a given paradigm dimension, rather than randomly across the paradigm. We conclude that morphological paradigms are used by the human language processor and can be systematically affected in language disorders
A broad-coverage distributed connectionist model of visual word recognition
In this study we describe a distributed connectionist model of morphological processing, covering a realistically sized sample of the English language. The purpose of this model is to explore how effects of discrete, hierarchically structured morphological paradigms, can arise as a result of the statistical sub-regularities in the mapping between
word forms and word meanings. We present a model that learns to produce at its output a realistic semantic representation of a word, on presentation of a distributed representation of its orthography. After training, in three experiments, we compare the outputs of the model with the lexical decision latencies for large sets of English nouns and verbs. We show that the model has developed detailed representations of morphological structure, giving rise to effects analogous to those observed in visual lexical decision experiments. In addition, we show how the association between word form and word meaning also
give rise to recently reported differences between regular and irregular verbs, even in their completely regular present-tense forms. We interpret these results as underlining the key importance for lexical processing of the statistical regularities in the mappings between form and meaning
Morphological Analysis as Classification: an Inductive-Learning Approach
Morphological analysis is an important subtask in text-to-speech conversion,
hyphenation, and other language engineering tasks. The traditional approach to
performing morphological analysis is to combine a morpheme lexicon, sets of
(linguistic) rules, and heuristics to find a most probable analysis. In
contrast we present an inductive learning approach in which morphological
analysis is reformulated as a segmentation task. We report on a number of
experiments in which five inductive learning algorithms are applied to three
variations of the task of morphological analysis. Results show (i) that the
generalisation performance of the algorithms is good, and (ii) that the lazy
learning algorithm IB1-IG performs best on all three tasks. We conclude that
lazy learning of morphological analysis as a classification task is indeed a
viable approach; moreover, it has the strong advantages over the traditional
approach of avoiding the knowledge-acquisition bottleneck, being fast and
deterministic in learning and processing, and being language-independent.Comment: 11 pages, 5 encapsulated postscript figures, uses non-standard NeMLaP
proceedings style nemlap.sty; inputs ipamacs (international phonetic
alphabet) and epsf macro
- …
