335,673 research outputs found

    Nested Sampling with Constrained Hamiltonian Monte Carlo

    Full text link
    Nested sampling is a powerful approach to Bayesian inference ultimately limited by the computationally demanding task of sampling from a heavily constrained probability distribution. An effective algorithm in its own right, Hamiltonian Monte Carlo is readily adapted to efficiently sample from any smooth, constrained distribution. Utilizing this constrained Hamiltonian Monte Carlo, I introduce a general implementation of the nested sampling algorithm.Comment: 15 pages, 4 figure

    Metropolis Methods for Quantum Monte Carlo Simulations

    Full text link
    Since its first description fifty years ago, the Metropolis Monte Carlo method has been used in a variety of different ways for the simulation of continuum quantum many-body systems. This paper will consider some of the generalizations of the Metropolis algorithm employed in quantum Monte Carlo: Variational Monte Carlo, dynamical methods for projector monte carlo ({\it i.e.} diffusion Monte Carlo with rejection), multilevel sampling in path integral Monte Carlo, the sampling of permutations, cluster methods for lattice models, the penalty method for coupled electron-ionic systems and the Bayesian analysis of imaginary time correlation functions.Comment: Proceedings of "Monte Carlo Methods in the Physical Sciences" Celebrating the 50th Anniversary of the Metropolis Algorith

    Quantum algorithm for exact Monte Carlo sampling

    Full text link
    We build a quantum algorithm which uses the Grover quantum search procedure in order to sample the exact equilibrium distribution of a wide range of classical statistical mechanics systems. The algorithm is based on recently developed exact Monte Carlo sampling methods, and yields a polynomial gain compared to classical procedures.Comment: 4 pages, 1 figure, discussion adde

    Alternative sampling for variational quantum Monte Carlo

    Full text link
    Expectation values of physical quantities may accurately be obtained by the evaluation of integrals within Many-Body Quantum mechanics, and these multi-dimensional integrals may be estimated using Monte Carlo methods. In a previous publication it has been shown that for the simplest, most commonly applied strategy in continuum Quantum Monte Carlo, the random error in the resulting estimates is not well controlled. At best the Central Limit theorem is valid in its weakest form, and at worst it is invalid and replaced by an alternative Generalised Central Limit theorem and non-Normal random error. In both cases the random error is not controlled. Here we consider a new `residual sampling strategy' that reintroduces the Central Limit Theorem in its strongest form, and provides full control of the random error in estimates. Estimates of the total energy and the variance of the local energy within Variational Monte Carlo are considered in detail, and the approach presented may be generalised to expectation values of other operators, and to other variants of the Quantum Monte Carlo method.Comment: 14 pages, 9 figure
    corecore