225,311 research outputs found

    Bimonotone Brownian Motion

    Full text link
    We define bi-monotone independence, prove a bi-monotone central limit theorem and use it to study the distribution of bi-monotone Brownian motion, which is defined as the two-dimensional operator process with monotone and antimonotone Brownian motion as components

    Gabriel Triangulations and Angle-Monotone Graphs: Local Routing and Recognition

    Get PDF
    A geometric graph is angle-monotone if every pair of vertices has a path between them that---after some rotation---is xx- and yy-monotone. Angle-monotone graphs are 2\sqrt 2-spanners and they are increasing-chord graphs. Dehkordi, Frati, and Gudmundsson introduced angle-monotone graphs in 2014 and proved that Gabriel triangulations are angle-monotone graphs. We give a polynomial time algorithm to recognize angle-monotone geometric graphs. We prove that every point set has a plane geometric graph that is generalized angle-monotone---specifically, we prove that the half-θ6\theta_6-graph is generalized angle-monotone. We give a local routing algorithm for Gabriel triangulations that finds a path from any vertex ss to any vertex tt whose length is within 1+21 + \sqrt 2 times the Euclidean distance from ss to tt. Finally, we prove some lower bounds and limits on local routing algorithms on Gabriel triangulations.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    A Helly-type theorem for semi-monotone sets and monotone maps

    Full text link
    We consider sets and maps defined over an o-minimal structure over the reals, such as real semi-algebraic or subanalytic sets. A {\em monotone map} is a multi-dimensional generalization of a usual univariate monotone function, while the closure of the graph of a monotone map is a generalization of a compact convex set. In a particular case of an identically constant function, such a graph is called a {\em semi-monotone set}. Graphs of monotone maps are, generally, non-convex, and their intersections, unlike intersections of convex sets, can be topologically complicated. In particular, such an intersection is not necessarily the graph of a monotone map. Nevertheless, we prove a Helly-type theorem, which says that for a finite family of subsets of \Real^n, if all intersections of subfamilies, with cardinalities at most n+1n+1, are non-empty and graphs of monotone maps, then the intersection of the whole family is non-empty and the graph of a monotone map.Comment: 7 pages. Minor corrections. Final version to appear in Discrete and Computational Geometr

    Monotone Projection Lower Bounds from Extended Formulation Lower Bounds

    Get PDF
    In this short note, we reduce lower bounds on monotone projections of polynomials to lower bounds on extended formulations of polytopes. Applying our reduction to the seminal extended formulation lower bounds of Fiorini, Massar, Pokutta, Tiwari, & de Wolf (STOC 2012; J. ACM, 2015) and Rothvoss (STOC 2014; J. ACM, 2017), we obtain the following interesting consequences. 1. The Hamiltonian Cycle polynomial is not a monotone subexponential-size projection of the permanent; this both rules out a natural attempt at a monotone lower bound on the Boolean permanent, and shows that the permanent is not complete for non-negative polynomials in VNPR_{{\mathbb R}} under monotone p-projections. 2. The cut polynomials and the perfect matching polynomial (or "unsigned Pfaffian") are not monotone p-projections of the permanent. The latter, over the Boolean and-or semi-ring, rules out monotone reductions in one of the natural approaches to reducing perfect matchings in general graphs to perfect matchings in bipartite graphs. As the permanent is universal for monotone formulas, these results also imply exponential lower bounds on the monotone formula size and monotone circuit size of these polynomials.Comment: Published in Theory of Computing, Volume 13 (2017), Article 18; Received: November 10, 2015, Revised: July 27, 2016, Published: December 22, 201
    corecore