126,754 research outputs found

    All-integrated universal RF photonic spectral shaper

    Get PDF
    We demonstrate a microwave photonic spectral shaper in a silicon chip enabling distinct phase and amplitude modulation transformation. We show unprecedented RF filtering through monolithic integration of the spectral shaper with tunable ring resonators

    Monolithically integrated active optical devices

    Get PDF
    Considerations relevant to the monolithic integration of optical detectors, lasers, and modulators with high speed amplifiers are discussed. Some design considerations for representative subsystems in the GaAs-AlGaAs and GaInAs-InP materials systems are described. Results of a detailed numerical design of an electro-optical birefringent filter for monolithic integration with a laser diode is described, and early experimental results on monolithic integration of broadband MESFET amplifiers with photoconductive detectors are reported

    Nanolasers grown on silicon

    Full text link
    Integration of optical interconnects with silicon-based electronics can address the growing limitations facing chip-scale data transport as microprocessors become progressively faster. However, material lattice mismatch and incompatible growth temperatures have fundamentally limited monolithic integration of lasers onto silicon substrates until now. Here, we use a novel growth scheme to overcome this roadblock and directly grow on-chip InGaAs nanopillar lasers, demonstrating the potency of bottom-up nano-optoelectronic integration. Unique helically-propagating cavity modes are employed to strongly confine light within subwavelength nanopillars despite low refractive index contrast between InGaAs and silicon. These modes thereby provide an avenue for engineering on-chip nanophotonic devices such as lasers. Nanopillar lasers are as-grown on silicon, offer tiny footprints and scalability, and are thereby particularly suited to high-density optoelectronics. They may ultimately form the basis of the missing monolithic light sources needed to bridge the existing gap between photonic and electronic circuits.Comment: submitted to Nature Photonic

    Gallium Arsenide Monolithic Optoelectronic Circuits

    Get PDF
    The optical properties of GaAs make it a very useful material for the fabrication of optical emitters and detectors. GaAs also possesses electronic properties which allow the fabrication of high speed electronic devices which are superior to conventional silicon devices. Monolithic optoelectronic circuits are formed by the integration of optical and electronic devices on a single GaAs substrate. Integration of many devices is most easily accomplished on a semi-insulating (SI) sub-strate. Several laser structures have been fabricated on SI GaAs substrates. Some of these lasers have been integrated with Gunn diodes and with metal semiconductor field effect transistors (MESFETs). An integrated optical repeater has been demonstrated in which MESFETs are used for optical detection and electronic amplification, and a laser is used to regenerate the optical signal. Monolithic optoelectronic circuits have also been constructed on conducting substrates. A heterojunction bipolar transistor driver has been integrated with a laser on an n-type GaAs substrate

    Monolithic Integration of a Plasmonic Sensor with CMOS Technology

    Get PDF
    Monolithic integration of nanophotonic sensors with CMOS detectors can transform the laboratory based nanophotonic sensors into practical devices with a range of applications in everyday life. In this work, by monolithically integrating an array of gold nanodiscs with the CMOS photodiode we have developed a compact and miniaturized nanophotonic sensor system having direct electrical read out. Doing so eliminates the need of expensive and bulky laboratory based optical spectrum analyzers used currently for measurements of nanophotonic sensor chips. The experimental optical sensitivity of the gold nanodiscs is measured to be 275 nm/RIU which translates to an electrical sensitivity of 5.4 V/RIU. This integration of nanophotonic sensors with the CMOS electronics has the potential to revolutionize personalized medical diagnostics similar to the way in which the CMOS technology has revolutionized the electronics industry

    Space Power Amplification with Active Linearly Tapered Slot Antenna Array

    Get PDF
    A space power amplifier composed of active linearly tapered slot antennas (LTSA's) has been demonstrated and shown to have a gain of 30 dB at 20 GHz. In each of the antenna elements, a GaAs monolithic microwave integrated circuit (MMIC) three-stage power amplifier is integrated with two LTSA's. The LTSA and the MMIC power amplifier has a gain of 11 dB and power added efficiency of 14 percent respectively. The design is suitable for constructing a large array using monolithic integration techniques

    A fully integrated high-Q Whispering-Gallery Wedge Resonator

    Full text link
    Microresonator devices which posses ultra-high quality factors are essential for fundamental investigations and applications. Microsphere and microtoroid resonators support remarkably high Q's at optical frequencies, while planarity constrains preclude their integration into functional lightwave circuits. Conventional semiconductor processing can also be used to realize ultra-high-Q's with planar wedge-resonators. Still, their full integration with side-coupled dielectric waveguides remains an issue. Here we show the full monolithic integration of a wedge-resonator/waveguide vertically-coupled system on a silicon chip. In this approach the cavity and the waveguide lay in different planes. This permits to realize the shallow-angle wedge while the waveguide remains intact, allowing therefore to engineer a coupling of arbitrary strength between these two. The precise size-control and the robustness against post-processing operation due to its monolithic integration makes this system a prominent platform for industrial-scale integration of ultra-high-Q devices into planar lightwave chips.Comment: 6 pages, 4 figure

    High-speed GaAlAs/GaAs p-i-n photodiode on a semi-insulating GaAs substrate

    Get PDF
    A high-speed, high-responsivity GaAlAs/GaAs p-i-n photodiode has been fabricated on a GaAs semi-insulating substrate. The 75-µm-diam photodiode has a 3-dB bandwidth of 2.5 GHz and responsivity of 0.45 A/W at 8400 Å (external quantum efficiency of 65%). The diode is suitable for monolithic integration with other optoelectronic devices
    corecore