266,176 research outputs found
Modularity and the predictive mind
Modular approaches to the architecture of the mind claim that some mental mechanisms, such as sensory input processes, operate in special-purpose subsystems that are functionally independent from the rest of the mind. This assumption of modularity seems to be in tension with recent claims that the mind has a predictive architecture. Predictive approaches propose that both sensory processing and higher-level processing are part of the same Bayesian information-processing hierarchy, with no clear boundary between perception and cognition. Furthermore, it is not clear how any part of the predictive architecture could be functionally independent, given that each level of the hierarchy is influenced by the level above. Both the assumption of continuity across the predictive architecture and the seeming non-isolability of parts of the predictive architecture seem to be at odds with the modular approach. I explore and ultimately reject the predictive approach’s apparent commitments to continuity and non-isolation. I argue that predictive architectures can be modular architectures, and that we should in fact expect predictive architectures to exhibit some form of modularity
Techniques for improving reliability of computers
Modular design techniques improve methods of error detection, diagnosis, and recovery. Theoretical computer (MARCS (Modular Architecture for Reliable Computer Systems)) study deals with postulated and modeled technology indigenous to 1975-1980. Study developments are discussed
A modular software architecture for UAVs
There have been several attempts to create scalable and hardware independent software architectures for Unmanned Aerial Vehicles (UAV). In this work, we propose an onboard architecture for UAVs where hardware abstraction, data storage and communication between modules are efficiently maintained. All processing and software development is done on the UAV while state and mission status of the UAV is monitored from a ground station. The architecture also allows rapid development of mission-specific third party applications on the vehicle with the help of the core module
Optimal modularity and memory capacity of neural reservoirs
The neural network is a powerful computing framework that has been exploited
by biological evolution and by humans for solving diverse problems. Although
the computational capabilities of neural networks are determined by their
structure, the current understanding of the relationships between a neural
network's architecture and function is still primitive. Here we reveal that
neural network's modular architecture plays a vital role in determining the
neural dynamics and memory performance of the network of threshold neurons. In
particular, we demonstrate that there exists an optimal modularity for memory
performance, where a balance between local cohesion and global connectivity is
established, allowing optimally modular networks to remember longer. Our
results suggest that insights from dynamical analysis of neural networks and
information spreading processes can be leveraged to better design neural
networks and may shed light on the brain's modular organization
Modular digital holographic fringe data processing system
A software architecture suitable for reducing holographic fringe data into useful engineering data is developed and tested. The results, along with a detailed description of the proposed architecture for a Modular Digital Fringe Analysis System, are presented
Implementing SaaS Solution for CRM
Greatest innovations in virtualization and distributed computing have accelerated interest in cloud computing (IaaS, PaaS, SaaS, aso). This paper presents the SaaS prototype for Customer Relationship Management of a real estate company. Starting from several approaches of e-marketing and SaaS features and architectures, we adopted a model for a CRM solution using SaaS Level 2 architecture and distributed database. Based on the system objective, functionality, we developed a modular solution for solve CRM and e-marketing targets in real estate companies.E-Marketing, SaaS Architecture, Modular Development
The failure tolerance of mechatronic software systems to random and targeted attacks
This paper describes a complex networks approach to study the failure
tolerance of mechatronic software systems under various types of hardware
and/or software failures. We produce synthetic system architectures based on
evidence of modular and hierarchical modular product architectures and known
motifs for the interconnection of physical components to software. The system
architectures are then subject to various forms of attack. The attacks simulate
failure of critical hardware or software. Four types of attack are
investigated: degree centrality, betweenness centrality, closeness centrality
and random attack. Failure tolerance of the system is measured by a 'robustness
coefficient', a topological 'size' metric of the connectedness of the attacked
network. We find that the betweenness centrality attack results in the most
significant reduction in the robustness coefficient, confirming betweenness
centrality, rather than the number of connections (i.e. degree), as the most
conservative metric of component importance. A counter-intuitive finding is
that "designed" system architectures, including a bus, ring, and star
architecture, are not significantly more failure-tolerant than interconnections
with no prescribed architecture, that is, a random architecture. Our research
provides a data-driven approach to engineer the architecture of mechatronic
software systems for failure tolerance.Comment: Proceedings of the 2013 ASME International Design Engineering
Technical Conferences & Computers and Information in Engineering Conference
IDETC/CIE 2013 August 4-7, 2013, Portland, Oregon, USA (In Print
- …
