658,109 research outputs found
When Mobile Blockchain Meets Edge Computing
Blockchain, as the backbone technology of the current popular Bitcoin digital
currency, has become a promising decentralized data management framework.
Although blockchain has been widely adopted in many applications, e.g.,
finance, healthcare, and logistics, its application in mobile services is still
limited. This is due to the fact that blockchain users need to solve preset
proof-of-work puzzles to add new data, i.e., a block, to the blockchain.
Solving the proof-of-work, however, consumes substantial resources in terms of
CPU time and energy, which is not suitable for resource-limited mobile devices.
To facilitate blockchain applications in future mobile Internet of Things
systems, multiple access mobile edge computing appears to be an auspicious
solution to solve the proof-of-work puzzles for mobile users. We first
introduce a novel concept of edge computing for mobile blockchain. Then, we
introduce an economic approach for edge computing resource management.
Moreover, a prototype of mobile edge computing enabled blockchain systems is
presented with experimental results to justify the proposed concept.Comment: Accepted by IEEE Communications Magazin
Mobile Agents for Mobile Tourists: A User Evaluation of Gulliver's Genie
How mobile computing applications and services may be best designed, implemented and deployed remains the subject of much research. One alternative approach to developing software for mobile users that is receiving increasing attention from the research community is that of one based on intelligent agents. Recent advances in mobile computing technology have made such an approach feasible. We present an overview of the design and implementation of an archetypical mobile computing application, namely that of an electronic tourist guide. This guide is unique in that it comprises a suite of intelligent agents that conform to the strong intentional stance. However, the focus of this paper is primarily concerned with the results of detailed user evaluations conducted on this system. Within the literature, comprehensive evaluations of mobile context-sensitive systems are sparse and therefore, this paper seeks, in part, to address this deficiency
SAMI: Service-Based Arbitrated Multi-Tier Infrastructure for Mobile Cloud Computing
Mobile Cloud Computing (MCC) is the state-ofthe- art mobile computing
technology aims to alleviate resource poverty of mobile devices. Recently,
several approaches and techniques have been proposed to augment mobile devices
by leveraging cloud computing. However, long-WAN latency and trust are still
two major issues in MCC that hinder its vision. In this paper, we analyze MCC
and discuss its issues. We leverage Service Oriented Architecture (SOA) to
propose an arbitrated multi-tier infrastructure model named SAMI for MCC. Our
architecture consists of three major layers, namely SOA, arbitrator, and
infrastructure. The main strength of this architecture is in its multi-tier
infrastructure layer which leverages infrastructures from three main sources of
Clouds, Mobile Network Operators (MNOs), and MNOs' authorized dealers. On top
of the infrastructure layer, an arbitrator layer is designed to classify
Services and allocate them the suitable resources based on several metrics such
as resource requirement, latency and security. Utilizing SAMI facilitate
development and deployment of service-based platform-neutral mobile
applications.Comment: 6 full pages, accepted for publication in IEEE MobiCC'12 conference,
MobiCC 2012:IEEE Workshop on Mobile Cloud Computing, Beijing, Chin
- …
