12,359 research outputs found

    Evolution of Cooperation among Mobile Agents

    Full text link
    We study the effects of mobility on the evolution of cooperation among mobile players, which imitate collective motion of biological flocks and interact with neighbors within a prescribed radius RR. Adopting the prisoner's dilemma game and the snowdrift game as metaphors, we find that cooperation can be maintained and even enhanced for low velocities and small payoff parameters, when compared with the case that all agents do not move. But such enhancement of cooperation is largely determined by the value of RR, and for modest values of RR, there is an optimal value of velocity to induce the maximum cooperation level. Besides, we find that intermediate values of RR or initial population densities are most favorable for cooperation, when the velocity is fixed. Depending on the payoff parameters, the system can reach an absorbing state of cooperation when the snowdrift game is played. Our findings may help understanding the relations between individual mobility and cooperative behavior in social systems.Comment: 15 pages, 5 figure

    A trustworthy mobile agent infrastructure for network management

    Get PDF
    Despite several advantages inherent in mobile-agent-based approaches to network management as compared to traditional SNMP-based approaches, industry is reluctant to adopt the mobile agent paradigm as a replacement for the existing manager-agent model; the management community requires an evolutionary, rather than a revolutionary, use of mobile agents. Furthermore, security for distributed management is a major concern; agent-based management systems inherit the security risks of mobile agents. We have developed a Java-based mobile agent infrastructure for network management that enables the safe integration of mobile agents with the SNMP protocol. The security of the system has been evaluated under agent to agent-platform and agent to agent attacks and has proved trustworthy in the performance of network management tasks

    Distributed Information Management with Mobile Agents

    No full text
    With more users taking advantage of publicly accessible networks, such as corporate intranets and the Internet, larger amounts of information is becoming electronically distributed and disseminated. Distributed information management is an emerging technology for dealing with the problems of managing information that is spread across networks, users and applications. We present four categories that we consider being necessary to developing tools to undertake distributed information management tasks. To help model the dynamic and heterogeneous nature of a user's distributed information, we advocate the use of agents and agent technologies when building distributed information management applications. We present an agent-oriented architecture which is based around a concept of mobile agents, since they provide a convenient abstraction for modelling distributed applications

    Migration control for mobile agents based on passport and visa

    Get PDF
    Research on mobile agents has attracted much attention as this paradigm has demonstrated great potential for the next-generation e-commerce. Proper solutions to security-related problems become key factors in the successful deployment of mobile agents in e-commerce systems. We propose the use of passport and visa (P/V) for securing mobile agent migration across communities based on the SAFER e-commerce framework. P/V not only serves as up-to-date digital credentials for agent-host authentication, but also provides effective security mechanisms for online communities to control mobile agent migration. Protection for mobile agents, network hosts, and online communities is enhanced using P/V. We discuss the design issues in details and evaluate the implementation of the proposed system
    corecore