652,688 research outputs found

    Efficient Analysis of Pattern and Association Rule Mining Approaches

    Full text link
    The process of data mining produces various patterns from a given data source. The most recognized data mining tasks are the process of discovering frequent itemsets, frequent sequential patterns, frequent sequential rules and frequent association rules. Numerous efficient algorithms have been proposed to do the above processes. Frequent pattern mining has been a focused topic in data mining research with a good number of references in literature and for that reason an important progress has been made, varying from performant algorithms for frequent itemset mining in transaction databases to complex algorithms, such as sequential pattern mining, structured pattern mining, correlation mining. Association Rule mining (ARM) is one of the utmost current data mining techniques designed to group objects together from large databases aiming to extract the interesting correlation and relation among huge amount of data. In this article, we provide a brief review and analysis of the current status of frequent pattern mining and discuss some promising research directions. Additionally, this paper includes a comparative study between the performance of the described approaches.Comment: 14 pages, 3 figures. arXiv admin note: text overlap with arXiv:1312.4800; and with arXiv:1109.2427 by other author

    Effective pattern discovery for text mining

    Get PDF
    Many data mining techniques have been proposed for mining useful patterns in text documents. However, how to effectively use and update discovered patterns is still an open research issue, especially in the domain of text mining. Since most existing text mining methods adopted term-based approaches, they all suffer from the problems of polysemy and synonymy. Over the years, people have often held the hypothesis that pattern (or phrase) based approaches should perform better than the term-based ones, but many experiments did not support this hypothesis. This paper presents an innovative technique, effective pattern discovery which includes the processes of pattern deploying and pattern evolving, to improve the effectiveness of using and updating discovered patterns for finding relevant and interesting information. Substantial experiments on RCV1 data collection and TREC topics demonstrate that the proposed solution achieves encouraging performance

    Towards Distributed Convoy Pattern Mining

    Full text link
    Mining movement data to reveal interesting behavioral patterns has gained attention in recent years. One such pattern is the convoy pattern which consists of at least m objects moving together for at least k consecutive time instants where m and k are user-defined parameters. Existing algorithms for detecting convoy patterns, however do not scale to real-life dataset sizes. Therefore a distributed algorithm for convoy mining is inevitable. In this paper, we discuss the problem of convoy mining and analyze different data partitioning strategies to pave the way for a generic distributed convoy pattern mining algorithm.Comment: SIGSPATIAL'15 November 03-06, 2015, Bellevue, WA, US

    Learning what matters - Sampling interesting patterns

    Get PDF
    In the field of exploratory data mining, local structure in data can be described by patterns and discovered by mining algorithms. Although many solutions have been proposed to address the redundancy problems in pattern mining, most of them either provide succinct pattern sets or take the interests of the user into account-but not both. Consequently, the analyst has to invest substantial effort in identifying those patterns that are relevant to her specific interests and goals. To address this problem, we propose a novel approach that combines pattern sampling with interactive data mining. In particular, we introduce the LetSIP algorithm, which builds upon recent advances in 1) weighted sampling in SAT and 2) learning to rank in interactive pattern mining. Specifically, it exploits user feedback to directly learn the parameters of the sampling distribution that represents the user's interests. We compare the performance of the proposed algorithm to the state-of-the-art in interactive pattern mining by emulating the interests of a user. The resulting system allows efficient and interleaved learning and sampling, thus user-specific anytime data exploration. Finally, LetSIP demonstrates favourable trade-offs concerning both quality-diversity and exploitation-exploration when compared to existing methods.Comment: PAKDD 2017, extended versio

    Reductions for Frequency-Based Data Mining Problems

    Full text link
    Studying the computational complexity of problems is one of the - if not the - fundamental questions in computer science. Yet, surprisingly little is known about the computational complexity of many central problems in data mining. In this paper we study frequency-based problems and propose a new type of reduction that allows us to compare the complexities of the maximal frequent pattern mining problems in different domains (e.g. graphs or sequences). Our results extend those of Kimelfeld and Kolaitis [ACM TODS, 2014] to a broader range of data mining problems. Our results show that, by allowing constraints in the pattern space, the complexities of many maximal frequent pattern mining problems collapse. These problems include maximal frequent subgraphs in labelled graphs, maximal frequent itemsets, and maximal frequent subsequences with no repetitions. In addition to theoretical interest, our results might yield more efficient algorithms for the studied problems.Comment: This is an extended version of a paper of the same title to appear in the Proceedings of the 17th IEEE International Conference on Data Mining (ICDM'17

    Constraint-based Sequential Pattern Mining with Decision Diagrams

    Full text link
    Constrained sequential pattern mining aims at identifying frequent patterns on a sequential database of items while observing constraints defined over the item attributes. We introduce novel techniques for constraint-based sequential pattern mining that rely on a multi-valued decision diagram representation of the database. Specifically, our representation can accommodate multiple item attributes and various constraint types, including a number of non-monotone constraints. To evaluate the applicability of our approach, we develop an MDD-based prefix-projection algorithm and compare its performance against a typical generate-and-check variant, as well as a state-of-the-art constraint-based sequential pattern mining algorithm. Results show that our approach is competitive with or superior to these other methods in terms of scalability and efficiency.Comment: AAAI201
    corecore