166,810 research outputs found

    Comparison of indices for the prediction of nitrogen mineralization after destruction of managed grassland

    Get PDF
    Intensively managed grasslands are occasionally chemically killed with herbicide and ploughed in order to grow an arable crop. After this management, large N mineralization rates with large losses to the environment are commonly observed. However, it remains to be determined to what extent the chemical killing contribute to increased N mineralization. In this study the potential nitrogen (N) mineralization from grasslands, that were killed with herbicides but otherwise undisturbed, was investigated in a laboratory experiment with undisturbed soil columns. Subsequently we assessed the predictive value of several laboratory indices for N mineralization after chemically killing of the grass. Mineralization rates varied from 0.5 to 3.0 g N m-2 wk-1. The contents of total N, total C, dissolved organic carbon (DOC) and hot-KCl extractable NH4 + were best related to N mineralization rates (R2=50, 48, 38 and 47%, respectively). In combination with information on the N content of the roots and stubble and the age of grassland at destruction, up to 62% of the variation in N mineralization rates could be explained. Although previous studies suggested that dissolved organic nitrogen (DON) is a good indicator for mineralization rates, this was not the case after chemically killing grass in the current study

    Predicting nitrogen mineralization from soil organic matter - a chimera?

    Get PDF
    Predicting nitrogen (N) mineralization from soil organic matter is difficult because N mineralization is affected by several environmental factors, while being the net outcome of concurrent N processes that produce and consume mineral N. One aim of the present thesis was to study the effects of freezing and thawing on carbon (C) and N mineralization. A second aim was to elucidate if, and how, the quantity and quality of organic matter inputs affect N mineralization from the pool of soil organic matter. C and net N mineralization were determined in soils from the Ultuna Long-Term Soil Organic Matter Experiment exposed to repeated freezing and thawing (temperatures ranging from –5 °C to +5 °C). C, gross and net N mineralization in relation to quantity and quality of organic matter inputs were determined during long-term laboratory incubations at 20 °C. Gross N mineralization rates were estimated using the 15N isotope dilution technique, which is based on several assumptions. The assumption of ‘equilibrium between added and native N’ was tested by using a published data set in a dynamic compartmental model. Freezing and thawing of soils resulted in a flush in C and N mineralization, but the effect was only short-lived. It was concluded that freezing and thawing of soils during late winter and early spring is unlikely to be of importance to crop N availability in spring. Both quantity and quality of organic matter were major determinants of C and gross N mineralization, and these were proportional suggesting that C mineralization may be used as a predictor for gross N mineralization. Preferential use of added N may be a more common occurrence in 15N isotope dilution studies than hitherto thought and the assumption of ‘equilibrium between added and native N’ needs therefore critical evaluation. The data analysis presented in this thesis offers a way to estimate the potential effects of preferential use on gross N mineralization rate estimates. This thesis indicates that studies based on the mechanisms underlying N processes may improve our understanding of the relation between soil organic matter and N mineralization. Further mechanistic studies should therefore be considered in future N research

    EXTENT OF MINERALIZATION ORGANIC FERTILIZER ON SALT AFFECTED SOIL AND THAT IMPLEMENTATION ON TOMATO

    Get PDF
    Mineralization of organic fertilizers in saline soil is determined by the level of soil salinity. The higher levels of soil salinity, the lower the ability of organic matter mineralization. Evaluation mineralization levels assessed by the content of N, P, K, C-org in organic fertilizer. Research objectives were to assess the ability of the various formulas of mineralization of organic fertilizer to provide nutrients and suppress soil salinity. Nutritional NPK fertilizers are classified by grade. The results showed that the formula with high-grade organic fertilizer was obtained from a mixture of manure, compost, guano, and straw. High-grade organic fertilizer is not always effective as the controlling soil salinity and aggregate stability, but can increase the CEC and the availability of N, N Ammonium inhibits volatilization, decrese soil EC, but soil pH was increased. Mineralization rate of organic fertilizer on clay-textured soil (Rungkut and Sedati) more slowly than sandy soil (Buduran). Keywords: grade, mineralization, NPK, organic fertilizers, soil salinit

    From variome to phenome : pathogenesis, diagnosis and management of ectopic mineralization disorders

    Get PDF
    Ectopic mineralization - inappropriate biomineralization in soft tissues - is a frequent finding in physiological aging processes and several common disorders, which can be associated with significant morbidity and mortality. Further, pathologic mineralization is seen in several rare genetic disorders, which often present life-threatening phenotypes. These disorders are classified based on the mechanisms through which the mineralization occurs: metastatic or dystrophic calcification or ectopic ossification. Underlying mechanisms have been extensively studied, which resulted in several hypotheses regarding the etiology of mineralization in the extracellular matrix of soft tissue. These hypotheses include intracellular and extracellular mechanisms, such as the formation of matrix vesicles, aberrant osteogenic and chondrogenic signaling, apoptosis and oxidative stress. Though coherence between the different findings is not always clear, current insights have led to improvement of the diagnosis and management of ectopic mineralization patients, thus translating pathogenetic knowledge (variome) to the phenotype (phenome). In this review, we will focus on the clinical presentation, pathogenesis and management of primary genetic soft tissue mineralization disorders. As examples of dystrophic calcification disorders Pseudoxanthoma elasticum, Generalized arterial calcification of infancy, Keutel syndrome, Idiopathic basal ganglia calcification and Arterial calcification due to CD73 (NT5E) deficiency will be discussed. Hyperphosphatemic familial tumoral calcinosis will be reviewed as an example of mineralization disorders caused by metastatic calcification

    Simultaneous quantification of depolymerization and mineralization rates by a novel 15N tracing model

    Get PDF
    The depolymerization of soil organic matter, such as proteins and (oligo-)peptides, into monomers (e.g. amino acids) is currently considered to be the rate-limiting step for nitrogen (N) availability in terrestrial ecosystems. The mineralization of free amino acids (FAAs), liberated by the depolymerization of peptides, is an important fraction of the total mineralization of organic N. Hence, the accurate assessment of peptide depolymerization and FAA mineralization rates is important in order to gain a better process-based understanding of the soil N cycle. In this paper, we present an extended numerical 15N tracing model Ntrace, which incorporates the FAA pool and related N processes in order to provide a more robust and simultaneous quantification of depolymerization and gross mineralization rates of FAAs and soil organic N. We discuss analytical and numerical approaches for two forest soils, suggest improvements of the experimental work for future studies, and conclude that (i) when about half of all depolymerized peptide N is directly mineralized, FAA mineralization can be as important a rate-limiting step for total gross N mineralization as peptide depolymerization rate; (ii) gross FAA mineralization and FAA immobilization rates can be used to develop FAA use efficiency (NUEFAA), which can reveal microbial N or carbon (C) limitation

    Mineralogical characterization of Sn deposits from the Santa Fe District, Bolivia

    Get PDF
    The Sn-Zn-Pb-Ag Japo-Santa Fe-Morococala ore deposit is located in the Central Andean Belt province. The ore mineralization is hosted in a Paleozoic metasedimentary sequence and porphyritic Oligocene-Miocene igneous rocks. Ore minerals occur in veins and disseminations. Two types of ore mineralization are distinghished: (1) An early Sn mineralization and (2) a late Sn and Zn-Pb-Ag mineralization. Mineral association consists mainly of quartz, pyrite, cassiterite, other sulfides and sulfosalts. Cassiterite, up to 0.25 wt% In, constitutes the earliest mineralization. Galena and sphalerite are the main sulphide minerals. Sphalerite shows up 0.24 wt% In. Stannite group is represented by stannoidite, kësterite, and sulfides of the Sn-Cu-Zn-Fe-S system. Sulfosalts include sakuraiite, potosiite, franckeite, freibergite, tetrahedrite, myargyrite, boulangerite, jamesonite, zinckenite, cylindrite and andorite. In this deposit, after an epigenetic magmatic stage, a long greisen-hydrothermal event took place with several episodes of metal deposition.Peer ReviewedPostprint (published version

    Colocation and role of polyphosphates and alkaline phosphatase in apatite biomineralization of elasmobranch tesserae

    Get PDF
    AbstractElasmobranchs (e.g. sharks and rays), like all fishes, grow continuously throughout life. Unlike other vertebrates, their skeletons are primarily cartilaginous, comprising a hyaline cartilage-like core, stiffened by a thin outer array of mineralized, abutting and interconnected tiles called tesserae. Tesserae bear active mineralization fronts at all margins and the tesseral layer is thin enough to section without decalcifying, making this a tractable but largely unexamined system for investigating controlled apatite mineralization, while also offering a potential analog for endochondral ossification. The chemical mechanism for tesserae mineralization has not been described, but has been previously attributed to spherical precursors, and alkaline phosphatase (ALP) activity. Here, we use a variety of techniques to elucidate the involvement of phosphorus-containing precursors in the formation of tesserae at their mineralization fronts. Using Raman spectroscopy, fluorescence microscopy and histological methods, we demonstrate that ALP activity is located with inorganic phosphate polymers (polyP) at the tessera–uncalcified cartilage interface, suggesting a potential mechanism for regulated mineralization: inorganic phosphate (Pi) can be cleaved from polyP by ALP, thus making Pi locally available for apatite biomineralization. The application of exogenous ALP to tissue cross-sections resulted in the disappearance of polyP and the appearance of Pi in uncalcified cartilage adjacent to mineralization fronts. We propose that elasmobranch skeletal cells control apatite biomineralization by biochemically controlling polyP and ALP production, placement and activity. Previous identification of polyP and ALP shown previously in mammalian calcifying cartilage supports the hypothesis that this mechanism may be a general regulating feature in the mineralization of vertebrate skeletons

    Remineralization of demineralized dentin using a dual analog system.

    Get PDF
    ObjectiveImproved methods are needed to remineralize dentin caries in order to promote conservation of dentin tissue and minimize the surgical interventions that are currently required for clinical treatment. Here, we test the hypothesis that bulk substrates can be effectively mineralized via a dual analog system proposed by others, using a tripolyphosphate (TPP) "templating analog" and a poly(acrylic acid) (PAA) or poly(aspartic acid) (pAsp) "sequestration analog," the latter of which generates the polymer-induced liquid-precursor (PILP) mineralization process studied in our laboratory.Material & methodsDemineralized human dentin slices were remineralized with and without pre-treatment with TPP, using either PAA or pAsp as the PILP process-directing agent. A control experiment with no polymer present was used for comparison.ResultsNo mineralization was observed in any of the PAA groups. In both the pAsp and no polymer groups, TPP inhibited mineralization on the surfaces of the specimens but promoted mineralization within the interiors. Pre-treatment with TPP enhanced overall mineralization of the pAsp group. However, when analysed via TEM, regions with little mineral were still present.ConclusionPoly(acrylic acid) was unable to remineralize demineralized dentin slices under the conditions employed, even when pre-treated with TPP. However, pre-treatment with TPP enhanced overall mineralization of specimens that were PILP-remineralized using pAsp

    The mineralization of commercial organic fertilizers at 8°C temperature

    Get PDF
    In organic production only organic fertilizers and soil conditioners can be used to supply the soil with nitrogen. The mineralization of these products is slow and so there can be problems with the supply of nitrogen, when the demand of the plants is high. The supply of nitrogen from organic products depends on the speed of their mineralization which is primarily influenced by the composition and formulation of their raw material. In apple production in the Alps-region especially during spring problems with nitrogen supply are common. In that period, the weather conditions are sometimes bad, the temperature in the soil is low and mineralization starts slowly - apple trees demand more nitrogen than the soil can deliver. To compensate the demand of the apple tree organic growers can not use mineral fertilizers but only organic fertilizers and soil conditioners whose mineralization rate is often unknown. There is a strong need in organic fruit production to receive more information about the behaviour of fertilizers in the soil especially concerning their N-release under different conditions. To acquire that information, incubation experiments under controlled conditions (temperature, type of soil, humidity of the soil) were carried out in the laboratory to determine the mineralization-rate of different organic fertilizers and soil conditioners which are available in our region

    Active geothermal systems with entrained seawater as analogues for low-sulphidation epithermal mineralization

    Get PDF
    The paradigm for low-sulphidation (LS) volcanic-arc associated mineralization is the active geothermal systems located along the Taupo Volcanic Zone (e.g. Broadlands). However, this analogue is inapt where fluid salinities are consistently in excess of 3.5 wt % NaCl. LS mineralization on Milos (Aegean arc) records high paleofluid-salinities. The ήD and ή18O data do not exemplify 18O-shifted meteoric waters—typical of terrestrial geothermal systems. Nor is a submarine origin indicated—stable isotope data show mixing between meteoric, seawater and volcanic-arc gases. Strontium isotope data are comparable to a nearby active seawater-entrained geothermal system. These are features seen in hydrothermal systems associated with emergent volcanoes. For the Milos LS mineralization, high-salinity fluids show it cannot be explained by a Broadlands-type model. The absence of saliferous sequences and significant intrusive rocks preclude these as salinity sources. The similarities between paleo and active systems in terms of salinity, ήD–ή18O and strontium isotope systematics strongly suggest that seawater is the main source for Na and Cl. We suggest geothermal systems, containing seawater, associated with emergent volcanoes are an alternative analogue for LS epithermal mineralization. Furthermore, they bridge the gap between submarine, and large-scale terrestrial geothermal systems—the modern analogues for VHMS and epithermal mineralisation in the scheme of intrusion-centered hydrothermal mineralization
    • 

    corecore