537,069 research outputs found
Computing the channel capacity of a communication system affected by uncertain transition probabilities
We study the problem of computing the capacity of a discrete memoryless
channel under uncertainty affecting the channel law matrix, and possibly with a
constraint on the average cost of the input distribution. The problem has been
formulated in the literature as a max-min problem. We use the robust
optimization methodology to convert the max-min problem to a standard convex
optimization problem. For small-sized problems, and for many types of
uncertainty, such a problem can be solved in principle using interior point
methods (IPM). However, for large-scale problems, IPM are not practical. Here,
we suggest an first-order algorithm based on Nemirovski
(2004) which is applied directly to the max-min problem.Comment: 22 pages, 2 figure
On the Triality Theory for a Quartic Polynomial Optimization Problem
This paper presents a detailed proof of the triality theorem for a class of
fourth-order polynomial optimization problems. The method is based on linear
algebra but it solves an open problem on the double-min duality left in 2003.
Results show that the triality theory holds strongly in a tri-duality form if
the primal problem and its canonical dual have the same dimension; otherwise,
both the canonical min-max duality and the double-max duality still hold
strongly, but the double-min duality holds weakly in a symmetrical form. Four
numerical examples are presented to illustrate that this theory can be used to
identify not only the global minimum, but also the largest local minimum and
local maximum.Comment: 16 pages, 1 figure; J. Industrial and Management Optimization, 2011.
arXiv admin note: substantial text overlap with arXiv:1104.297
Robust and MaxMin Optimization under Matroid and Knapsack Uncertainty Sets
Consider the following problem: given a set system (U,I) and an edge-weighted
graph G = (U, E) on the same universe U, find the set A in I such that the
Steiner tree cost with terminals A is as large as possible: "which set in I is
the most difficult to connect up?" This is an example of a max-min problem:
find the set A in I such that the value of some minimization (covering) problem
is as large as possible.
In this paper, we show that for certain covering problems which admit good
deterministic online algorithms, we can give good algorithms for max-min
optimization when the set system I is given by a p-system or q-knapsacks or
both. This result is similar to results for constrained maximization of
submodular functions. Although many natural covering problems are not even
approximately submodular, we show that one can use properties of the online
algorithm as a surrogate for submodularity.
Moreover, we give stronger connections between max-min optimization and
two-stage robust optimization, and hence give improved algorithms for robust
versions of various covering problems, for cases where the uncertainty sets are
given by p-systems and q-knapsacks.Comment: 17 pages. Preliminary version combining this paper and
http://arxiv.org/abs/0912.1045 appeared in ICALP 201
- …
