2 research outputs found

    Flowcuits: Crafting Tangible and Interactive Electrical Components with Liquid Metal Circuits

    Get PDF
    We present Flowcuits, a DIY fabrication method to prototype tangible, interactive and functional electrical components by manipulating liquid metal mechanisms. The generated prototypes afford both physical and visual interactions to demonstrate the inner working, underlying concepts and mechanics of fundamental electronic elements and circuits, which we propose as a method to support playful learning. The fabrication process follows simple imprinting and sealing of fluidic circuits with a 3D printed stamp on a commonly accessible and inexpensive moldable substrate such as 'blu tack'. Utilizing gallium-indium (Ga-In) liquid metal as the conductive element, we demonstrated our approach can create interactive and customizable electronic components such as switches, variable resistors, variable capacitors, logic gates and pressure sensors. In this paper, we present the design analogy of Flowcuits, DIY fabrication approach including a parametric 3D stamp design toolkit and results from a technical evaluation of the demonstrators. The stamps are printed with a low-cost 3D printer and all the materials are inexpensive and reusable, enabling Flowcuits to be easily used without any advance lab facilities

    milliMorph -- Fluid-Driven Thin Film Shape-Change Materials for Interaction Design

    No full text
    © 2019 Association for Computing Machinery. This paper presents a design space, a fabrication system and applications of creating fluidic chambers and channels at millimeter scale for tangible actuated interfaces. The ability to design and fabricate millifluidic chambers allows one to create high frequency actuation, sequential control of flows and high resolution design on thin film materials. We propose a four dimensional design space of creating these fluidic chambers, a novel heat sealing system that enables easy and precise mil-lifluidics fabrication, and application demonstrations of the fabricated materials for haptics, ambient devices and robotics. As shape-change materials are increasingly integrated in designing novel interfaces, milliMorph enriches the library of fluid-driven shape-change materials, and demonstrates new design opportunities that is unique at millimeter scale for product and interaction design
    corecore