170,978 research outputs found
The Drosophila immunoglobulin gene turtle encodes guidance molecules involved in axon pathfinding
Background: Neuronal growth cones follow specific pathways over long distances in order to reach their appropriate targets. Research over the past 15 years has yielded a large body of information concerning the molecules that regulate this process. Some of these molecules, such as the evolutionarily conserved netrin and slit proteins, are expressed in the embryonic midline, an area of extreme importance for early axon pathfinding decisions. A general model has emerged in which netrin attracts commissural axons towards the midline while slit forces them out. However, a large number of commissural axons successfully cross the midline even in the complete absence of netrin signaling, indicating the presence of a yet unidentified midline attractant.
Results: The evolutionarily conserved Ig proteins encoded by the turtle/Dasm1 genes are found in Drosophila, Caenorhabditis elegans, and mammals. In Drosophila the turtle gene encodes five proteins, two of which are diffusible, that are expressed in many areas, including the vicinity of the midline. Using both molecular null alleles and transgenic expression of the different isoforms, we show that the turtle encoded proteins function as non-cell autonomous axonal attractants that promote midline crossing via a netrin-independent mechanism. turtle mutants also have either stalled or missing axon projections, while overexpression of the different turtle isoforms produces invasive neurons and branching axons that do not respect the histological divisions of the nervous system.
Conclusion: Our findings indicate that the turtle proteins function as axon guidance cues that promote midline attraction, axon branching, and axonal invasiveness. The latter two capabilities are required by migrating axons to explore densely packed targets
Wearing a bike helmet leads to less cognitive control, revealed by lower frontal midline theta power and risk indifference
A recent study claims that participants wearing a bike helmet behave riskier in a computer-based risk task compared to control participants without a bike helmet. We hypothesized that wearing a bike helmet reduces cognitive control over risky behavior. To test our hypothesis, we recorded participants' EEG brain responses while they played a risk game developed in our laboratory. Previously, we found that, in this risk game, anxious participants showed greater levels of cognitive control as revealed by greater frontal midline theta power, which was associated with less risky decisions. Here, we predicted that cognitive control would be reduced in the helmet group, indicated by reduced frontal midline theta power, and that this group would prefer riskier options in the risk game. In line with our hypothesis, we found that participants in the helmet group showed significantly lower frontal midline theta power than participants in the control group, indicating less cognitive control. We did not replicate the finding of generally riskier behavior in the helmet group. Instead, we found that participants chose the riskier option in about half of trials, no matter how risky the other option was. Our results suggest that wearing a bike helmet reduces cognitive control, as revealed by reduced frontal midline theta power, leading to risk indifference when evaluating potential behaviors
Triple leads with longitudinal guarded cathodes in spinal cord stimulation-effect of transversal lead separation
In spinal cord stimulation (SCS) clinical practice, longitudinal guarded cathode stimulation by a single lead, placed on the spinal cord midline provides the broadest parasthesia coverage. This study uses a triple lead longitudinal tripole with the center lead placed on the midline. The transversal spacing between the leads is varied to study its effect on the usage range (UR) and the recruited area (both depth and width) of dorsal colums activation
Axon fasciculation and differences in midline kinetics between pioneer and follower axons within commissural fascicles
Early neuronal scaffold development studies suggest that initial neurons and their axons serve as guides for later neurons and their processes. Although this arrangement might aid axon navigation, the specific consequence(s) of such interactions are unknown in vivo. We follow forebrain commissure formation in living zebrafish embryos using timelapse fluorescence microscopy to examine quantitatively commissural axon kinetics at the midline: a place where axon interactions might be important. Although it is commonly accepted that commissural axons slow down at the midline, our data show this is only true for leader axons. Follower axons do not show this behavior. However, when the leading axon is ablated, follower axons change their midline kinetics and behave as leaders. Similarly, contralateral leader axons change their midline kinetics when they grow along the opposite leading axon across the midline. These data suggest a simple model where the level of growth cone exposure to midline cues and presence of other axons as a substrate shape the midline kinetics of commissural axons
Midline Household Survey Results: Rupandehi, Nepal
This report summarizes the main findings from the household midline survey conducted in seven villages of the district of Rupandehi, one of CCAFS site, in Nepal in July 2019. The household survey revisited the 135 households of the 2012 CCAFS baseline survey and used the same standardized household survey tools. The Open Data Kit (ODK) software was used for the data collection.
The results show that the majority of households in Rupandehi produce a variety of crops, among which rice, wheat and mustard. Many farmers also rear livestock such as cows, buffalo, chicken, oxen and goat. All members of the family typically engage in the on-farm agricultural work but men are more likely to be also involved in off-farm activities. Households members derive their income from a variety of sources, the main one being payments from the government or other projects/programs. This is followed by remittances and income from businesses as the main alternative income sources for many households. Moreover, most of the farmers have made changes in their agricultural practices since the baseline. Many have introduced higher-yielding crop varieties or have stopped keeping one or more types of animals on the farm.
In terms of food security, the majority of the households surveyed in Rupandehi district are food secure throughout the entire year. The households mostly obtain their food directly from their farms. However, some of the households purchase food from other sources, especially during the month of June, July and August. Most farmers are small landholders, almost 75% of the households’ land sizes are marginal (< 1 ha), followed by a minority of smallholders owning between 1 and 2 ha of land. 98% of the households indicated buying seeds and inorganic fertilizers whereas 95% of households reported the purchase of pesticides and insecticides. 70% of households also recorded the purchase of veterinary medicine.
According to the survey, television, cell phone and bicycle are the most common assets in the area. Internet access is also common in many households. Women are mostly involved in crops cultivation, mainly vegetables and cereals along with rearing livestock. The farmers have shifted towards higher-yielding and better-quality varieties of rice, and wheat. The survey findings indicate that farmers are well aware of agricultural innovations and tend to use new crop varieties
Planar cell polarity genes Frizzled3a, Vangl2, and Scribble are required for spinal commissural axon guidance
Background A fundamental feature of early nervous system development is the guidance of axonal projections to their targets in order to assemble neural circuits that control behavior. Spinal commissural neurons are an attractive model to investigate the multiple guidance cues that control growth cone navigation both pre- and post-midline crossing, as well as along both the dorsal–ventral (D–V) and anterior–posterior (A–P) axes. Accumulating evidence suggests that guidance of spinal commissural axons along the A–P axis is dependent on components of the planar cell polarity (PCP) signaling pathway. In the zebrafish, the earliest born spinal commissural neuron to navigate the midline and turn rostrally is termed commissural primary ascending (CoPA). Unlike mammalian systems, CoPA axons cross the midline as a single axon and allow an analysis of the role of PCP components in anterior pathfinding in single pioneering axons. Results Here, we establish CoPA cells in the zebrafish spinal cord as a model system for investigating the molecular function of planar cell polarity signaling in axon guidance. Using mutant analysis, we show that the functions of Fzd3a and Vangl2 in the anterior turning of commissural axons are evolutionarily conserved in teleosts. We extend our findings to reveal a role for the PCP gene scribble in the anterior guidance of CoPA axons. Analysis of single CoPA axons reveals that these commissural axons become responsive to PCP-dependent anterior guidance cues even prior to midline crossing. When midline crossing is prevented by dcc gene knockdown, ipsilateral CoPA axons still extend axons anteriorly in response to A–P guidance cues. We show that this ipsilateral anterior pathfinding that occurs in the absence of midline crossing is dependent on PCP signaling. Conclusion Our results demonstrate that anterior guidance decisions by CoPA axons are dependent on the function of planar cell polarity genes both prior to and after midline crossing
Mesiodens preventing eruption of a permanent central incisor
A maxillary midline supernumerary tooth is the most common type of supernumerary tooth. We present a case of a mesiodens, preventing eruption of a permanent central incisor. The aetiology, diagnosis and the effect of these developmental anomalies upon the dentition are discussed.peer-reviewe
Prognostic value of early magnetic resonance imaging in dogs after traumatic brain injury: 50 cases
Retrospective study of dogs with TBI that underwent 1.5T MRI within 14 days after head trauma. MRI evaluators were blinded to the clinical presentation, and all images were scored based on an MRI grading system (Grade I [normal brain parenchyma] to Grade VI [bilateral lesions affecting the brainstem with or without any lesions of lesser grade]). Skull fractures, percentage of intraparenchymal lesions, degree of midline shift, and type of brain herniation were evaluated. MGCS was assessed at presentation. The presence of seizures was recorded. Outcome was assessed at 48 h (alive or dead) and at 3, 6, 12, and 24 months after TBI
Role of the hindbrain in dorsoventral but not anteroposterior axial specification of the inner ear
An early and crucial event in vertebrate inner ear development is the acquisition of axial identities that in turn dictate the positions of all subsequent inner ear components. Here, we focus on the role of the hindbrain in establishment of inner ear axes and show that axial specification occurs well after otic placode formation in chicken. Anteroposterior (AP) rotation of the hindbrain prior to specification of this axis does not affect the normal AP orientation and morphogenesis of the inner ear. By contrast, reversing the dorsoventral (DV) axis of the hindbrain results in changing the DV axial identity of the inner ear. Expression patterns of several ventrally expressed otic genes such as NeuroD, Lunatic fringe (Lfng) and Six1 are shifted dorsally, whereas the expression pattern of a normally dorsal-specific gene, Gbx2, is abolished. Removing the source of Sonic Hedgehog (SHH) by ablating the floor plate and/or notochord, or inhibiting SHH function using an antibody that blocks SHH bioactivity results in loss of ventral inner ear structures. Our results indicate that SHH, together with other signals from the hindbrain, are important for patterning the ventral axis of the inner ear. Taken together, our studies suggest that tissue(s) other than the hindbrain confer AP axial information whereas signals from the hindbrain are necessary and sufficient for the DV axial patterning of the inner ear
- …
