124,399 research outputs found
Synergistic Effect of Carbon Nanotubes and Decabromodiphenyl Oxide/Sb\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e in Improving the Flame Retardancy of Polystyrene
Brominated flame retardant polystyrene composites were prepared by melt blending polystyrene, decabromodiphenyl oxide, antimony oxide, multi-wall carbon nanotubes and montmorillonite clay. Synergy between carbon nanotubes and clay and the brominated fire retardant was studied by thermogravimetric analysis, microscale combustion calorimetry and cone calorimetry. Nanotubes are more efficient than clay in improving the flame retardancy of the materials and promoting carbonization in the polystyrene matrix. Comparison of the results from the microscale combustion calorimeter and the cone calorimeter indicate that the rate of change of the peak heat release rate reduction in the microscale combustion calorimeter was slower than that in the cone. Both heat release capacity and reduction in the peak heat release rate in the microscale combustion calorimeter are important for screening the flame retardant materials; they show good correlations with the cone parameters, peak heat release rate and total heat released
Demagnetization Borne Microscale Skyrmions
Magnetic systems are an exciting realm of study that is being explored on
smaller and smaller scales. One extremely interesting magnetic state that has
gained momentum in recent years is the skyrmionic state. It is characterized by
a vortex where the edge magnetic moments point opposite to the core. Although
skyrmions have many possible realizations, in practice, creating them in a lab
is a difficult task to accomplish. In this work, new methods for skyrmion
generation and customization are suggested. Skyrmionic behavior was numerically
observed in minimally customized simulations of spheres, hemisphere,
ellipsoids, and hemi-ellipsoids, for typ- ical Cobalt parameters, in a range
from approximately 40 nm to 120 nm in diameter simply by applying a field
Accurate macroscale modelling of spatial dynamics in multiple dimensions
Developments in dynamical systems theory provides new support for the
macroscale modelling of pdes and other microscale systems such as Lattice
Boltzmann, Monte Carlo or Molecular Dynamics simulators. By systematically
resolving subgrid microscale dynamics the dynamical systems approach constructs
accurate closures of macroscale discretisations of the microscale system. Here
we specifically explore reaction-diffusion problems in two spatial dimensions
as a prototype of generic systems in multiple dimensions. Our approach unifies
into one the modelling of systems by a type of finite elements, and the
`equation free' macroscale modelling of microscale simulators efficiently
executing only on small patches of the spatial domain. Centre manifold theory
ensures that a closed model exist on the macroscale grid, is emergent, and is
systematically approximated. Dividing space either into overlapping finite
elements or into spatially separated small patches, the specially crafted
inter-element/patch coupling also ensures that the constructed discretisations
are consistent with the microscale system/PDE to as high an order as desired.
Computer algebra handles the considerable algebraic details as seen in the
specific application to the Ginzburg--Landau PDE. However, higher order models
in multiple dimensions require a mixed numerical and algebraic approach that is
also developed. The modelling here may be straightforwardly adapted to a wide
class of reaction-diffusion PDEs and lattice equations in multiple space
dimensions. When applied to patches of microscopic simulations our coupling
conditions promise efficient macroscale simulation.Comment: some figures with 3D interaction when viewed in Acrobat Reader. arXiv
admin note: substantial text overlap with arXiv:0904.085
The effect of non-uniform microscale distribution of sorption sites on solute diffusion in soil
Conventional models of solute transport in soil consider only soil volumes large enough to average over microscale heterogeneities, and it is assumed that microscale variations are unimportant at the macroscale. In this research we test this assumption for cases in which the microscale distribution of solute-sorbing sites is patchy. We obtain a set of equations at the macroscale that allow for the effect of the microscale distribution with the mathematical technique of homogenization. We combine these equations with an image-based model that describes the true microscale pore geometry in a real, structured soil measured with X-ray computed tomography. The resulting models are used to test the microscale averaging assumptions inherent in conventional models. We show that, in general, macroscale diffusion is little affected by microscale variation in the distribution of sorption sites. Therefore, for most purposes the assumption of microscale averaging used in conventional models is justified. The effects of microscale heterogeneity are noticeable only when (i) the rate of sorption is slow compared with diffusion, but still fast enough to affect macroscale transport and (ii) the defined macroscale volume approaches the microscale. We discuss the effects when these conditions are me
Asymptotic theory for a moving droplet driven by a wettability gradient
An asymptotic theory is developed for a moving drop driven by a wettability
gradient. We distinguish the mesoscale where an exact solution is known for the
properly simplified problem. This solution is matched at both -- the advancing
and the receding side -- to respective solutions of the problem on the
microscale. On the microscale the velocity of movement is used as the small
parameter of an asymptotic expansion. Matching gives the droplet shape,
velocity of movement as a function of the imposed wettability gradient and
droplet volume.Comment: 8 fig
Is Your Neighborhood Designed to Support Physical Activity? A Brief Streetscape Audit Tool.
INTRODUCTION:Macro level built environment factors (eg, street connectivity, walkability) are correlated with physical activity. Less studied but more modifiable microscale elements of the environment (eg, crosswalks) may also affect physical activity, but short audit measures of microscale elements are needed to promote wider use. This study evaluated the relation of a 15-item neighborhood environment audit tool with a full version of the tool to assess neighborhood design on physical activity in 4 age groups. METHODS:From the 120-item Microscale Audit of Pedestrian Streetscapes (MAPS) measure of street design, sidewalks, and street crossings, we developed the 15-item version (MAPS-Mini) on the basis of associations with physical activity and attribute modifiability. As a sample of a likely walking route, MAPS-Mini was conducted on a 0.25-mile route from participant residences toward the nearest nonresidential destination for children (n = 758), adolescents (n = 897), younger adults (n = 1,655), and older adults (n = 367). Active transportation and leisure physical activity were measured with age-appropriate surveys, and accelerometers provided objective physical activity measures. Mixed-model regressions were conducted for each MAPS item and a total environment score, adjusted for demographics, participant clustering, and macrolevel walkability. RESULTS:Total scores of MAPS-Mini and the 120-item MAPS correlated at r = .85. Total microscale environment scores were significantly related to active transportation in all age groups. Items related to active transport in 3 age groups were presence of sidewalks, curb cuts, street lights, benches, and buffer between street and sidewalk. The total score was related to leisure physical activity and accelerometer measures only in children. CONCLUSION:The MAPS-Mini environment measure is short enough to be practical for use by community groups and planning agencies and is a valid substitute for the full version that is 8 times longer
- …
