4,231 research outputs found

    Introduction to Prosthetic Limbs

    Get PDF
    Approximately 2 million people in the Unites States alone have had an amputation, and many of these people use a prosthetic limb daily. The prosthetic limb, which began as a primitive device, is now a highly sophisticated piece of technology. It is because of many devoted scientists that we now have access to this life-transforming device. There are many causes for amputation; a few causes included disease, accidents, and congenital conditions. Although missing a limb can be life-altering, health care teams consisting of physicians, physical therapists, and orthotists are dedicated to helping people return to everyday activities and to excel in their pursuits

    Obstacle course: Users’ maneuverability and movement efficiency when using Otto Bock C-Leg, Otto Bock 3R60, and CaTech SNS prosthetic knee joints

    Get PDF
    The performance and movement efficiency of prosthesis users while traversing a multisectional obstacle course (OC) were evaluated using a crossover design with random allocation of three prosthetic knee joints: the SNS (CaTech; Dayton, Ohio) the C-Leg (Otto Bock; Duderstadt, Germany), and the 3R60 (Otto Bock). Twelve users completed the OC twice with each joint, once without and once with a mental loading task (MLT). The performance was objectively assessed using time measurement from digital video recordings, and the Total Heart Beat Index was used to estimate movement efficiency. A 1 mo familiarization period was provided for each knee joint before data collection. It took longer to complete the OC with the 3R60 compared with either the SNS or the C-Leg. No significant time differences were found between the C-Leg and the SNS, but differences between the 3R60 and the SNS (slalom and rock sections) and between the 3R60 and the C-Leg (rock section) were observed. Within the simulated sand section, two participants fell with the C-Leg, one with the 3R60, and none with the SNS. Movement efficiency without MLT was similar between all joints, but with an MLT a significant decrease in movement efficiency was observed with the C-Leg. Previous experience using an SNS had no influence on the results

    A knee brace design to reduce the energy consumption of walking

    Get PDF
    Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2005.Includes bibliographical references (leaves 51-52).Recent research into the mechanics of walking indicates that a quasi passive wearable device could be created which dramatically reduces the metabolic energy used in walking especially when the wearer is carrying additional torso weight. Target population groups include military personnel who must carry heavy battle packs and body armor, hikers, letter carriers, and the quasi disabled. This latter group includes a significant fraction of the elderly who have reduced leg strength and/or higher weight torsos. The device is called PUUMA, an acronym for Personal Unpowered Universal Mobility Assistant. Though walking has been studied extensively, there appears to be a limited understanding of the interplay between the kinetic and potential energy of the torso when driven by legs that can store and release energy. This thesis introduces a simplified model which enables simulation of the entire walking process including the epoch following heel strike. One simulation goal was to explore the knee spring properties which enable lossless walking. Simulations show that there are two knee spring configurations which allow for lossless walking. It is also shown that the percentage of kinetic energy transferred to a knee spring can be a significant fraction of the torso kinetic energy.(cont.) PIJUMA's basic idea is the incorporation of torsion springs at the knee joints which absorb torso kinetic energy following heel strike and then release that stored energy later in the step. An application of the capstan effect is introduced which enables a practical implementation of two knee spring configurations. In particular, the design allows the thigh and shank to be dynamically coupled to a microprocessor controlled knee spring thereby allowing both unimpeded leg swing and kinetic energy transfer to the knee spring. Another use of the capstan effect is introduced which allows for a microprocessor controlled brake that can freeze the knee at its maximum torsion and then release it later in the walking cycle. A design is shown which embodies the architectural ideas created. Several of the key components were designed, prototyped and tested.by Matthew R. Carvey.S.B

    Spartan Daily, October 12, 1981

    Get PDF
    Volume 77, Issue 28https://scholarworks.sjsu.edu/spartandaily/6804/thumbnail.jp

    Spartan Daily, October 12, 1981

    Get PDF
    Volume 77, Issue 28https://scholarworks.sjsu.edu/spartandaily/6804/thumbnail.jp

    Real-time gait event detection for transfemoral amputees during ramp ascending and descending

    Get PDF
    Events and phases detection of the human gait are vital for controlling prosthesis, orthosis and functional electrical stimulation (FES) systems. Wearable sensors are inexpensive, portable and have fast processing capability. They are frequently used to assess spatio-temporal, kinematic and kinetic parameters of the human gait which in turn provide more details about the human voluntary control and ampute-eprosthesis interaction. This paper presents a reliable real-time gait event detection algorithm based on simple heuristics approach, applicable to signals from tri-axial gyroscope for lower limb amputees during ramp ascending and descending. Experimental validation is done by comparing the results of gyroscope signal with footswitches. For healthy subjects, the mean difference between events detected by gyroscope and footswitches is 14 ms and 10.5 ms for initial contact (IC) whereas for toe off (TO) it is -5 ms and -25 ms for ramp up and down respectively. For transfemoral amputee, the error is slightly higher either due to the placement of footswitches underneath the foot or the lack of proper knee flexion and ankle plantarflexion/dorsiflexion during ramp up and down. Finally, repeatability tests showed promising results

    Serum microRNA array analysis identifies miR-140-3p, miR-33b-3p and miR-671-3p as potential osteoarthritis biomarkers involved in metabolic processes.

    Get PDF
    Background: MicroRNAs (miRNAs) in circulation have emerged as promising biomarkers. In this study, we aimed to identify a circulating miRNA signature for osteoarthritis (OA) patients and in combination with bioinformatics analysis to evaluate the utility of selected differentially expressed miRNAs in the serum as potential OA biomarkers. Methods: Serum samples were collected from 12 primary OA patients, and 12 healthy individuals were screened using the Agilent Human miRNA Microarray platform interrogating 2549 miRNAs. Receiver Operating Characteristic (ROC) curves were constructed to evaluate the diagnostic performance of the deregulated miRNAs. Expression levels of selected miRNAs were validated by quantitative real-time PCR (qRT-PCR) in all serum and in articular cartilage samples from OA patients (n = 12) and healthy individuals (n = 7). Bioinformatics analysis was used to investigate the involved pathways and target genes for the above miRNAs. Results: We identified 279 differentially expressed miRNAs in the serum of OA patients compared to controls. Two hundred and five miRNAs (73.5%) were upregulated and 74 (26.5%) downregulated. ROC analysis revealed that 77 miRNAs had area under the curve (AUC) > 0.8 and p < 0.05. Bioinformatics analysis in the 77 miRNAs revealed that their target genes were involved in multiple signaling pathways associated with OA, among which FoxO, mTOR, Wnt, pI3K/akt, TGF-β signaling pathways, ECM-receptor interaction, and fatty acid biosynthesis. qRT-PCR validation in seven selected out of the 77 miRNAs revealed 3 significantly downregulated miRNAs (hsa-miR-33b-3p, hsa-miR-671-3p, and hsa-miR-140-3p) in the serum of OA patients, which were in silico predicted to be enriched in pathways involved in metabolic processes. Target-gene analysis of hsa-miR-140-3p, hsa-miR-33b-3p, and hsa-miR-671-3p revealed that InsR and IGFR1 were common targets of all three miRNAs, highlighting their involvement in regulation of metabolic processes that contribute to OA pathology. Hsa-miR-140-3p and hsa-miR-671-3p expression levels were consistently downregulated in articular cartilage of OA patients compared to healthy individuals. Conclusions: A serum miRNA signature was established for the first time using high density resolution miR-arrays in OA patients. We identified a three-miRNA signature, hsa-miR-140-3p, hsa-miR-671-3p, and hsa-miR-33b-3p, in the serum of OA patients, predicted to regulate metabolic processes, which could serve as a potential biomarker for the evaluation of OA risk and progression.Peer reviewedFinal Published versio
    corecore