49,553 research outputs found
Recommended from our members
Current commercialization status of electrowetting-on-dielectric (EWOD) digital microfluidics.
The emergence of electrowetting-on-dielectric (EWOD) in the early 2000s made the once-obscure electrowetting phenomenon practical and led to numerous activities over the last two decades. As an eloquent microscale liquid handling technology that gave birth to digital microfluidics, EWOD has served as the basis for many commercial products over two major application areas: optical, such as liquid lenses and reflective displays, and biomedical, such as DNA library preparation and molecular diagnostics. A number of research or start-up companies (e.g., Phillips Research, Varioptic, Liquavista, and Advanced Liquid Logic) led the early commercialization efforts and eventually attracted major companies from various industry sectors (e.g., Corning, Amazon, and Illumina). Although not all of the pioneering products became an instant success, the persistent growth of liquid lenses and the recent FDA approvals of biomedical analyzers proved that EWOD is a powerful tool that deserves a wider recognition and more aggressive exploration. This review presents the history around major EWOD products that hit the market to show their winding paths to commercialization and summarizes the current state of product development to peek into the future. In providing the readers with a big picture of commercializing EWOD and digital microfluidics technology, our goal is to inspire further research exploration and new entrepreneurial adventures
Optical imaging techniques in microfluidics and their applications
Microfluidic devices have undergone rapid development in recent years and provide a lab-on-a-chip solution for many biomedical and chemical applications. Optical imaging techniques are essential in microfluidics for observing and extracting information from biological or chemical samples. Traditionally, imaging in microfluidics is achieved by bench-top conventional microscopes or other bulky imaging systems. More recently, many novel compact microscopic techniques have been developed to provide a low-cost and portable solution. In this review, we provide an overview of optical imaging techniques used in microfluidics followed with their applications. We first discuss bulky imaging systems including microscopes and interferometer-based techniques, then we focus on compact imaging systems that can be better integrated with microfluidic devices, including digital in-line holography and scanning-based imaging techniques. The applications in biomedicine or chemistry are also discussed along with the specific imaging techniques
Advances in Microfluidics and Lab-on-a-Chip Technologies
Advances in molecular biology are enabling rapid and efficient analyses for
effective intervention in domains such as biology research, infectious disease
management, food safety, and biodefense. The emergence of microfluidics and
nanotechnologies has enabled both new capabilities and instrument sizes
practical for point-of-care. It has also introduced new functionality, enhanced
sensitivity, and reduced the time and cost involved in conventional molecular
diagnostic techniques. This chapter reviews the application of microfluidics
for molecular diagnostics methods such as nucleic acid amplification,
next-generation sequencing, high resolution melting analysis, cytogenetics,
protein detection and analysis, and cell sorting. We also review microfluidic
sample preparation platforms applied to molecular diagnostics and targeted to
sample-in, answer-out capabilities
Microfluidics for effective concentration and sorting of waterborne protozoan pathogens
We report on an inertial focussing based microfluidics technology for concentrating waterborne protozoa, achieving a 96% recovery rate of Cryptosporidium parvum and 86% for Giardia lamblia at a throughput (mL/min) capable of replacing centrifugation. The approach can easily be extended to other parasites and also bacteria
Yield Enhancement of Digital Microfluidics-Based Biochips Using Space Redundancy and Local Reconfiguration
As microfluidics-based biochips become more complex, manufacturing yield will
have significant influence on production volume and product cost. We propose an
interstitial redundancy approach to enhance the yield of biochips that are
based on droplet-based microfluidics. In this design method, spare cells are
placed in the interstitial sites within the microfluidic array, and they
replace neighboring faulty cells via local reconfiguration. The proposed design
method is evaluated using a set of concurrent real-life bioassays.Comment: Submitted on behalf of EDAA (http://www.edaa.com/
- …