9,948 research outputs found
Atomic spectrometry update. Review of advances in the analysis of metals, chemicals and materials
OC-OT-LIBS: A novel approach to the chemical characterization of single particles
Spectral identification of individual micro- and nano-sized particles by the sequential intervention of optical catapulting, optical trapping and laser-induced breakdown spectroscopy is presented [1]. The three techniques are used for different purposes. Optical catapulting (OC) serves to put the particulate material under inspection in aerosol form [2-4]. Optical trapping (OT) permits the isolation and manipulation of individual particles from the aerosol, which are subsequently analyzed by laser-induced breakdown spectroscopy (LIBS). Once catapulted, the dynamics of particle trapping depends on the laser beam characteristics (power and intensity gradient) and on the particle properties (size, mass and shape). Particles are stably trapped in air at atmospheric pressure and can be conveniently manipulated for a precise positioning for LIBS analysis. The spectra acquired from the individually trapped particles permit a straightforward identification of the inspected material.
The current work focuses on the development of a procedure for simultaneously acquiring dual information about the particle under study via LIBS and time-resolved plasma images by taking advantage of the aforementioned features of the OC-OT-LIBS instrument to align the multiple lines in a simple yet highly accurate way. The plasma imaging does not only further reinforce the spectral data, but also allows a better comprehension of the chemical and physical processes involved during laser-particle interaction. Also, a thorough determination of the optimal excitation conditions generating the most information out of each laser event was run along the determination of parameters such as the width of the optical trap, its stability as a function of the laser power and the laser wavelength. The extreme sensibility of the presented OC-OT-LIBS technology allows a detection power of attograms for single/individual particle analysis.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
Improvements to the Overpotential of All-Solid-State Lithium-Ion Batteries during the Past Ten Years
After the research that shows that Li10GeP2S12 (LGPS)-type sulfide solid electrolytes can reach the high ionic conductivity at the room temperature, sulfide solid electrolytes have been intensively developed with regard to ionic conductivity and mechanical properties. As a result, an increasing volume of research has been conducted to employ all-solid-state lithium batteries in electric automobiles within the next five years. To achieve this goal, it is important to review the research over the past decade, and understand the requirements for future research necessary to realize the practical applications of all-solid-state lithium batteries. To date, research on all-solid-state lithium batteries has focused on achieving overpotential properties similar to those of conventional liquid-lithium-ion batteries by increasing the ionic conductivity of the solid electrolytes. However, the increase in the ionic conductivity should be accompanied by improvements of the electronic conductivity within the electrode to enable practical applications. This essay provides a critical overview of the recent progress and future research directions of the all-solid-state lithium batteries for practical applications
Application of LIBS in Detection of Antihyperglycemic Trace Elements in Momordica charantia
The present study exploits the information based on concentration of trace elements and minerals in understanding the role/mechanism of action of freeze-dried fruit powder suspended in distilled water of Momordica charantia (family: Cucurbitaceae) in diabetes treatment. Laser-induced break down spectroscopy (LIBS) spectra of plant product was recorded under optimized experimental conditions and analyzed. Several atomic lines such as Na, K, Mg, Ca, Fe, Al, etc. have been observed in the LIBS spectra of the above plant product. The concentrations of these minerals are determined by using calibration-free LIBS method. Correlation between the concentration of these elements/minerals and their defined role in diabetes management was studied in normal as well as diabetic animal model
The potassic sedimentary rocks in Gale Crater, Mars, as seen by ChemCam on board Curiosity
The Mars Science Laboratory rover Curiosity encountered potassium-rich clastic sedimentary rocks at two sites in Gale Crater, the waypoints Cooperstown and Kimberley. These rocks include several distinct meters thick sedimentary outcrops ranging from fine sandstone to conglomerate, interpreted to record an ancient fluvial or fluvio-deltaic depositional system. From ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) chemical analyses, this suite of sedimentary rocks has an overall mean K2O abundance that is more than 5 times higher than that of the average Martian crust. The combined analysis of ChemCam data with stratigraphic and geographic locations reveals that the mean K2O abundance increases upward through the stratigraphic section. Chemical analyses across each unit can be represented as mixtures of several distinct chemical components, i.e., mineral phases, including K-bearing minerals, mafic silicates, Fe-oxides, and Fe-hydroxide/oxyhydroxides. Possible K-bearing minerals include alkali feldspar (including anorthoclase and sanidine) and K-bearing phyllosilicate such as illite. Mixtures of different source rocks, including a potassium-rich rock located on the rim and walls of Gale Crater, are the likely origin of observed chemical variations within each unit. Physical sorting may have also played a role in the enrichment in K in the Kimberley formation. The occurrence of these potassic sedimentary rocks provides additional evidence for the chemical diversity of the crust exposed at Gale Crater
Recommended from our members
Dynamic Covalent Synthesis of Crystalline Porous Graphitic Frameworks
Porous graphitic framework (PGF) is a two-dimensional (2D) material that has emerging energy applications. An archetype contains stacked 2D layers, the structure of which features a fully annulated aromatic skeleton with embedded heteroatoms and periodic pores. Due to the lack of a rational approach in establishing in-plane order under mild synthetic conditions, the structural integrity of PGF has remained elusive and ultimately limited its material performance. Here, we report the discovery of the unusual dynamic character of the C=N bonds in the aromatic pyrazine ring system under basic aqueous conditions, which enables the successful synthesis of a crystalline porous nitrogenous graphitic framework with remarkable in-plane order, as evidenced by powder X-ray diffraction studies and direct visualization using high-resolution transmission electron microscopy. The crystalline framework displays superior performance as a cathode material for lithium-ion batteries, outperforming the amorphous counterparts in terms of capacity and cycle stability. Insertion of well-defined, evenly spaced nanoscale pores into the two-dimensional (2D) layers of graphene invokes exciting properties due to the modulation of its electronic band gaps and surface functionalities. A bottom-up synthesis approach to such porous graphitic frameworks (PGFs) is appealing but also remains a great challenge. The current methods of building covalent organic frameworks rely on a small collection of thermodynamically reversible reactions. Such reactions are, however, inadequate in generating a fully annulated aromatic skeleton in PGFs. With the discovery of dynamic pyrazine formation, we succeeded in applying this linking chemistry to obtain a crystalline PGF material, which has displayed high electrical conductivity and remarkable performance as a cathode material for lithium-ion batteries. We envision that the demonstrated success will open the door to a wide array of fully annulated 2D porous frameworks, which hold immense potential for clean energy applications. We report the unusual dynamic characteristics of the C=N bonds in the pyrazine ring promoted under basic aqueous conditions, which enables the successful synthesis of two-dimensional porous graphitic frameworks (PGFs) featuring fully annulated aromatic skeletons and periodic pores. The PGF displayed high electrical conductivity and remarkable performance as a cathode material for lithium-ion batteries, far outperforming the amorphous counterparts in terms of capacity and cycle stability
- …
