757,800 research outputs found
Nonparametric Independence Screening in Sparse Ultra-High Dimensional Varying Coefficient Models
The varying-coefficient model is an important nonparametric statistical model
that allows us to examine how the effects of covariates vary with exposure
variables. When the number of covariates is big, the issue of variable
selection arrives. In this paper, we propose and investigate marginal
nonparametric screening methods to screen variables in ultra-high dimensional
sparse varying-coefficient models. The proposed nonparametric independence
screening (NIS) selects variables by ranking a measure of the nonparametric
marginal contributions of each covariate given the exposure variable. The sure
independent screening property is established under some mild technical
conditions when the dimensionality is of nonpolynomial order, and the
dimensionality reduction of NIS is quantified. To enhance practical utility and
the finite sample performance, two data-driven iterative NIS methods are
proposed for selecting thresholding parameters and variables: conditional
permutation and greedy methods, resulting in Conditional-INIS and Greedy-INIS.
The effectiveness and flexibility of the proposed methods are further
illustrated by simulation studies and real data applications
Group descent algorithms for nonconvex penalized linear and logistic regression models with grouped predictors
Penalized regression is an attractive framework for variable selection
problems. Often, variables possess a grouping structure, and the relevant
selection problem is that of selecting groups, not individual variables. The
group lasso has been proposed as a way of extending the ideas of the lasso to
the problem of group selection. Nonconvex penalties such as SCAD and MCP have
been proposed and shown to have several advantages over the lasso; these
penalties may also be extended to the group selection problem, giving rise to
group SCAD and group MCP methods. Here, we describe algorithms for fitting
these models stably and efficiently. In addition, we present simulation results
and real data examples comparing and contrasting the statistical properties of
these methods
Inference regarding multiple structural changes in linear models estimated via two stage least squares
In this paper, we extend Bai and Perron’s (1998, Econometrica, p.47-78) framework for multiple break testing to linear models estimated via Two Stage Least Squares (2SLS). Within our framework, the break points are estimated simultaneously with the regression parameters via minimization of the residual sum of squares on the second step of the 2SLS estimation. We establish the consistency of the resulting estimated break point fractions. We show that various F-statistics for structural instability based on the 2SLS estimator have the same limiting distribution as the analogous statistics for OLS considered by Bai and Perron (1998). This allows us to extend Bai and Perron’s (1998) sequential procedure for selecting the number of break points to the 2SLS setting. Our methods also allow for structural instability in the reduced form that has been identified a priori using data-based methods. As an empirical illustration, our methods are used to assess the stability of the New Keynesian Phillips curve.unknown break points; structural change; instrumental variables; endogenous regressors; structural stability tests; new Keynesian Phillips curve
How good are dynamic factor models at forecasting output and inflation? A meta-analytic approach
This paper surveys existing factor forecast applications for real economic activity and inflation by means of a meta-analysis and contributes to the current debate on the determinants of the forecast performance of large-scale dynamic factor models relative to other models. We find that, on average, factor forecasts are slightly better than other models' forecasts. In particular, factor models tend to outperform small-scale models, whereas they perform slightly worse than alternative methods which are also able to exploit large datasets. Our results further suggest that factor forecasts are better for US than for UK macroeconomic variables, and that they are better for US than for euro-area output; however, there are no significant differences between the relative factor forecast performance for US and euro-area inflation. There is also some evidence that factor models are better suited to predict output at shorter forecast horizons than at longer horizons. These findings all relate to the forecasting environment (which cannot be influenced by the forecasters). Among the variables capturing the forecasting design (which can, by contrast, be influenced by the forecasters), the size of the dataset from which factors are extracted seems to positively affect the relative factor forecast performance. There is some evidence that quarterly data lend themselves better to factor forecasts than monthly data. Rolling forecasts are preferable to recursive forecasts. The factor estimation technique seems to matter as well. Other potential determinants - namely whether forecasters rely on a balanced or an unbalanced panel, whether restrictions implied by the factor structure are imposed in the forecasting equation or not and whether an iterated or a direct multi-step forecast is made - are found to be rather irrelevant. Moreover, we find no evidence that pre-selecting the variables to be included in the panel from which factors are extracted helped to improve factor forecasts in the past. --Factor models,forecasting,meta-analysis
- …
