2,411 research outputs found

    Hypervelocity impact survivability experiments for carbonaceous impactors

    Get PDF
    We performed a series of hypervelocity impact experiments using carbon-bearing impactors (diamond, graphite, fullerenes, phthalic acid crystals, and Murchison meteorite) into Al plate at velocities between 4.2 and 6.1 km/s. These tests were made to do the following: (1) determine the survivability of carbon forms and organize molecules in low hypervelocity impact; (2) characterize carbonaceous impactor residues; and (3) determine whether or not fullerenes could form from carbonaceous impactors, under our experimental conditions, or survive as impactors. An analytical protocol of field emission SEM imagery, SEM-EDX, laser Raman spectroscopy, single and 2-stage laser mass spectrometry, and laser induced fluorescence (LIF) found the following: (1) diamonds did not survive impact at 4.8 km/s, but were transformed into various forms of disordered graphite; (2) intact, well-ordered graphite impactors did survive impact at 5.9 km/sec, but were only found in the crater bottom centers; the degree of impact-induced disorder in the graphite increases outward (walls, rims, ejecta); (3) phthalic acid crystals were destroyed on impact (at 4.2 km/s, although a large proportion of phthalic acid molecules did survive impact); (4) fullerenes did not form as products of carbonaceous impactors (5.9 - 6.1 km/s, fullerene impactor molecules mostly survived impact at 5.9 km/s; and (5) two Murchison meteorite samples (launched at 4.8 and 5.9 km/s) show preservation of some higher mass polycyclic aromatic hydrocarbons (PAHs) compared with the non-impacted sample. Each impactor type shows unique impactor residue morphologies produced at a given impact velocity. An expanded methodology is presented to announce relatively new analytical techniques together with innovative modifications to other methods that can be used to characterize small impact residues in LDEF craters, in addition to other acquired extraterrestrial samples

    National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1992, volume 1

    Get PDF
    The 1992 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, Washington, DC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers. This document is a compilation of the final reports 1 through 12

    Specification goals for a Mars seismic network

    Get PDF
    A seismic network on Mars should have enough stations (e.g., 24) to characterize the seismicity of the planet for comparison with a diversity of structural features; be comprised of low noise stations, preferably underground, 3 to 4 orders of magnitude more sensitive than those used on Viking; record over a sufficient band-width (DC-30 Hz) to detect micro-earthquakes to normal modes; and record for a sufficient duration (10 years) and data rate (10(exp 8) Mb/day/station) to obtain a data set comparable to that from the Apollo mission to the Moon so that locations of major internal boundaries can be inferred, such as those in the Earth, i.e., crust - lithosphere - asthenosphere - upper - lower phase transitions - outer - inner core. The proposed Mars Global Network Mission provides an opportunity to sense the dynamics and probe the interior of the planet. The seismic objectives, the availability of the instrumentation and trade-offs to meet them are discussed

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 204

    Get PDF
    This bibliography lists 140 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1980

    MarsQuake: Seismology on another planet

    Get PDF
    The MarsQuake project provides a set of teaching resources and classroom activities that can use real data and images sent back from the 2018 NASA InSight mission to Mars. Aimed at 11–18 year-olds (KS 3, 4 and 5), these activities include modelling and locating meteorite impacts, or marsquakes, which will help us understand more about theinternal structure of the ‘red planet’. The InSight lander will deploy two seismometers that will send live data back to Earth. It offers our first chance to look at extra-terrestrial quake data since the Apollo moon missions of the 1960s and 1970s. Data from InSight’s seismometers will be transmitted back to Earth and will be freely accessible online. The mission is expected to last at least a year and should send back a continuous stream of data for scientists, and students, to analyse

    Cratering in glasses impacted by debris or micrometeorites

    Get PDF
    Mechanical strength measurements on five glasses and one glass-ceramic exposed on LDEF revealed no damage exceeding experimental limits of error. The measurement technique subjected less than 5 percent of the sample surface area to stresses above 90 percent of the failure strength. Seven micrometeorite or space debris impacts occurred at locations which were not in that portion of the sample subjected to greater than 90 percent of the applied stress. As a result of this, the impact events on the sample were not detected in the mechanical strength measurements. The physical form and structure of the impact sites was carefully examined to determine the influence of those events upon stress concentration associated with the impact and the resulting mechanical strength. The size of the impact site, insofar as it determines flaw size for fracture purposes, was examined. Surface topography of the impacts reveals that six of the seven sites display impact melting. The classical melt crater structure is surrounded by a zone of fractured glass. Residual stresses arising from shock compression and from cooling of the fused zone cannot be included in the fracture mechanics analyses based on simple flaw size measurements. Strategies for refining estimates of mechanical strength degradation by impact events are presented

    Resources of Near-Earth Space: Abstracts

    Get PDF
    The objectives are by theory, experiment, and bench-level testing of small systems, to develop scientifically-sound engineering processes and facility specifications for producing propellants and fuels, construction and shielding materials, and life support substances from the lithospheres and atmospheres of lunar, planetary, and asteroidal bodies. Current emphasis is on the production of oxygen, other usefull gases, metallic, ceramic/composite, and related byproducts from lunar regolith, carbonaceous chrondritic asteroids, and the carbon dioxide rich Martian atmosphere

    Modeling asteroid collisions and impact processes

    Full text link
    As a complement to experimental and theoretical approaches, numerical modeling has become an important component to study asteroid collisions and impact processes. In the last decade, there have been significant advances in both computational resources and numerical methods. We discuss the present state-of-the-art numerical methods and material models used in "shock physics codes" to simulate impacts and collisions and give some examples of those codes. Finally, recent modeling studies are presented, focussing on the effects of various material properties and target structures on the outcome of a collision.Comment: Chapter to appear in the Space Science Series Book: Asteroids IV. Includes minor correction
    corecore