7,142,121 research outputs found
MECHANISMS OF DISEASE Acute Oxygen-Sensing Mechanisms
JOSEPH PRIESTLEY, ONE OF THE THREE SCIENTISTS CREDITED WITH THE discovery of oxygen, described the death of mice that were deprived of oxygen. However, he was also well aware of the toxicity of too much oxygen, stating, “For as a candle burns much faster in dephlogisticated [oxygen enriched] than in common air, so we might live out too fast, and the animal powers be too soon exhausted in this pure kind of air. A moralist, at least, may
say, that the air which nature has provided for us is as good as we deserve.”1
In this review we examine the remarkable mechanisms by which different organs detect and respond to acute changes in oxygen tension. Specialized tissues that sense the local oxygen tension include glomus cells of the carotid body, neuroepithelial bodies in the lungs, chromaffin cells of the fetal adrenal medulla, and smooth-muscle cells of the resistance pulmonary arteries,
fetoplacental arteries, systemic arteries, and the ductus arteriosus. Together, they constitute a specialized homeostatic oxygen-sensing system. Although all tissues are sensitive to severe hypoxia, these specialized tissues respond rapidly to moderate changes in oxygen tension within the physiologic range (roughly 40 to 100 mm Hg in an adult and 20 to 40 mm Hg in a fetus)Junta de Andalucí
Reallocation Mechanisms
We consider reallocation problems in settings where the initial endowment of
each agent consists of a subset of the resources. The private information of
the players is their value for every possible subset of the resources. The goal
is to redistribute resources among agents to maximize efficiency. Monetary
transfers are allowed, but participation is voluntary.
We develop incentive-compatible, individually-rational and budget balanced
mechanisms for several classic settings, including bilateral trade, partnership
dissolving, Arrow-Debreu markets, and combinatorial exchanges. All our
mechanisms (except one) provide a constant approximation to the optimal
efficiency in these settings, even in ones where the preferences of the agents
are complex multi-parameter functions
Budget Feasible Mechanisms
We study a novel class of mechanism design problems in which the outcomes are
constrained by the payments. This basic class of mechanism design problems
captures many common economic situations, and yet it has not been studied, to
our knowledge, in the past. We focus on the case of procurement auctions in
which sellers have private costs, and the auctioneer aims to maximize a utility
function on subsets of items, under the constraint that the sum of the payments
provided by the mechanism does not exceed a given budget. Standard mechanism
design ideas such as the VCG mechanism and its variants are not applicable
here. We show that, for general functions, the budget constraint can render
mechanisms arbitrarily bad in terms of the utility of the buyer. However, our
main result shows that for the important class of submodular functions, a
bounded approximation ratio is achievable. Better approximation results are
obtained for subclasses of the submodular functions. We explore the space of
budget feasible mechanisms in other domains and give a characterization under
more restricted conditions
Exotic mitotic mechanisms
The emergence of eukaryotes around two billion years ago provided new challenges for the chromosome segregation machineries: the physical separation of multiple large and linear chromosomes from the microtubule-organizing centres by the nuclear envelope. In this review, we set out the diverse solutions that eukaryotic cells use to solve this problem, and show how stepping away from ‘mainstream’ mitosis can teach us much about the mechanisms and mechanics that can drive chromosome segregation. We discuss the evidence for a close functional and physical relationship between membranes, nuclear pores and kinetochores in generating the forces necessary for chromosome segregation during mitosis
Graphical Exchange Mechanisms
Consider an exchange mechanism which accepts diversified offers of various
commodities and redistributes everything it receives. We impose certain
conditions of fairness and convenience on such a mechanism and show that it
admits unique prices, which equalize the value of offers and returns for each
individual.
We next define the complexity of a mechanism in terms of certain integers
and that represent the time required to exchange
for , the difficulty in determining the exchange ratio, and the
dimension of the message space. We show that there are a finite number of
minimally complex mechanisms, in each of which all trade is conducted through
markets for commodity pairs.
Finally we consider minimal mechanisms with smallest worst-case complexities
and . For commodities, there are
precisely three such mechanisms, one of which has a distinguished commodity --
the money -- that serves as the sole medium of exchange. As the money mechanism is the only one with bounded .Comment: 26 page
- …
