5,907 research outputs found

    Finite size mean-field models

    Get PDF
    We characterize the two-site marginals of exchangeable states of a system of quantum spins in terms of a simple positivity condition. This result is used in two applications. We first show that the distance between two-site marginals of permutation invariant states on N spins and exchangeable states is of order 1/N. The second application relates the mean ground state energy of a mean-field model of composite spins interacting through a product pair interaction with the mean ground state energies of the components.Comment: 20 page

    Solitons in relativistic mean field models

    Full text link
    Assuming that the nucleus can be treated as a perfect fluid we study the conditions for the formation and propagation of Korteweg-de Vries (KdV) solitons in nuclear matter. The KdV equation is obtained from the Euler and continuity equations in nonrelativistic hydrodynamics. The existence of these solitons depends on the nuclear equation of state, which, in our approach, comes from well known relativistic mean field models. We reexamine early works on nuclear solitons, replacing the old equations of state by new ones, based on QHD and on its variants. Our analysis suggests that KdV solitons may indeed be formed in the nucleus with a width which, in some cases, can be smaller than one fermi.Comment: 15 pages, 1 figur

    Pairing gaps from nuclear mean-field models

    Get PDF
    We discuss the pairing gap, a measure for nuclear pairing correlations, in chains of spherical, semi-magic nuclei in the framework of self-consistent nuclear mean-field models. The equations for the conventional BCS model and the approximate projection-before-variation Lipkin-Nogami method are formulated in terms of local density functionals for the effective interaction. We calculate the Lipkin-Nogami corrections of both the mean-field energy and the pairing energy. Various definitions of the pairing gap are discussed as three-point, four-point and five-point mass-difference formulae, averaged matrix elements of the pairing potential, and single-quasiparticle energies. Experimental values for the pairing gap are compared with calculations employing both a delta pairing force and a density-dependent delta interaction in the BCS and Lipkin-Nogami model. Odd-mass nuclei are calculated in the spherical blocking approximation which neglects part of the the core polarization in the odd nucleus. We find that the five-point mass difference formula gives a very robust description of the odd-even staggering, other approximations for the gap may differ from that up to 30% for certain nuclei.Comment: 17 pages, 8 figures. Accepted for publication in EPJ
    corecore