951,502 research outputs found

    Just How Final are Today's Quantum Structures?

    Get PDF
    I present a selection of conceptual and mathematical problems in the foundations of modern physics as they derive from the title question. Contribution to a panel session, "Springer Forum: Quantum Structures -- Physical, Mathematical and Epistemological Problems", held at the Biannual Symposium of the International Quantum Structures Association, Liptovsky Jan, September 1998. To appear in journal: Soft Computing (2001).Comment: 3 pages, tcilate

    The Phillips Machine, The Analogue Computing Traditoin in Economics and Computability

    Get PDF
    In this paper I try to argue for the desirability of analog computation in economics from a variety of perspectives, using the example of the Phillips Machine. Ultimately, a case is made for the underpinning of both analog and digital computing theory in constructive mathematics. Some conceptual confusion in the meaning of analog computing and its non-reliance on the theory of numerical analysis is also discussed. Digital computing has its mathematical foundations in (classical) recursion theory and constructive mathematics. The implicit, working, assumption of those who practice the noble art of analog computing may well be that the mathematical foundations of their subject is as sound as the foundations of the real analysis. That, in turn, implies a reliance on the soundness of set theory plus the axiom of choice. This is, surely, seriously disturbing from a computation point of view. Therefore, in this paper, I seek to locate a foundation for analog computing in exhibiting some tentative dualities with results that are analogous to those that are standard in computability theory. The main question, from the point of view of economics, is whether the Phillips Machine, as an analog computer, has universal computing properties. The conjectured answer is in the negative.Phillips Machine, Analogue Computation, Digital Computation, Computability, General Purpose Analogue Computer

    Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates

    Full text link
    New efficient and accurate numerical methods are proposed to compute ground states and dynamics of dipolar Bose-Einstein condensates (BECs) described by a three-dimensional (3D) Gross-Pitaevskii equation (GPE) with a dipolar interaction potential. Due to the high singularity in the dipolar interaction potential, it brings significant difficulties in mathematical analysis and numerical simulations of dipolar BECs. In this paper, by decoupling the two-body dipolar interaction potential into short-range (or local) and long-range interactions (or repulsive and attractive interactions), the GPE for dipolar BECs is reformulated as a Gross-Pitaevskii-Poisson type system. Based on this new mathematical formulation, we prove rigorously existence and uniqueness as well as nonexistence of the ground states, and discuss the existence of global weak solution and finite time blowup of the dynamics in different parameter regimes of dipolar BECs. In addition, a backward Euler sine pseudospectral method is presented for computing the ground states and a time-splitting sine pseudospectral method is proposed for computing the dynamics of dipolar BECs. Due to the adaption of new mathematical formulation, our new numerical methods avoid evaluating integrals with high singularity and thus they are more efficient and accurate than those numerical methods currently used in the literatures for solving the problem. Extensive numerical examples in 3D are reported to demonstrate the efficiency and accuracy of our new numerical methods for computing the ground states and dynamics of dipolar BECs

    Immersed boundary methods for numerical simulation of confined fluid and plasma turbulence in complex geometries: a review

    Full text link
    Immersed boundary methods for computing confined fluid and plasma flows in complex geometries are reviewed. The mathematical principle of the volume penalization technique is described and simple examples for imposing Dirichlet and Neumann boundary conditions in one dimension are given. Applications for fluid and plasma turbulence in two and three space dimensions illustrate the applicability and the efficiency of the method in computing flows in complex geometries, for example in toroidal geometries with asymmetric poloidal cross-sections.Comment: in Journal of Plasma Physics, 201
    corecore