236,882 research outputs found
Fractional-order susceptible-infected model: definition and applications to the study of COVID-19 main protease
We propose a model for the transmission of perturbations across the amino
acids of a protein represented as an interaction network. The dynamics consists
of a Susceptible-Infected (SI) model based on the Caputo fractional-order
derivative. We find an upper bound to the analytical solution of this model
which represents the worse-case scenario on the propagation of perturbations
across a protein residue network. This upper bound is expressed in terms of
Mittag-Leffler functions of the adjacency matrix of the network of inter-amino
acids interactions. We then apply this model to the analysis of the propagation
of perturbations produced by inhibitors of the main protease of SARS CoV-2. We
find that the perturbations produced by strong inhibitors of the protease are
propagated far away from the binding site, confirming the long-range nature of
intra-protein communication. On the contrary, the weakest inhibitors only
transmit their perturbations across a close environment around the binding
site. These findings may help to the design of drug candidates against this new
coronavirus.Comment: 21 pages, 2 figure
Evolutionary Multi-Objective Design of SARS-CoV-2 Protease Inhibitor Candidates
Computational drug design based on artificial intelligence is an emerging
research area. At the time of writing this paper, the world suffers from an
outbreak of the coronavirus SARS-CoV-2. A promising way to stop the virus
replication is via protease inhibition. We propose an evolutionary
multi-objective algorithm (EMOA) to design potential protease inhibitors for
SARS-CoV-2's main protease. Based on the SELFIES representation the EMOA
maximizes the binding of candidate ligands to the protein using the docking
tool QuickVina 2, while at the same time taking into account further objectives
like drug-likeliness or the fulfillment of filter constraints. The experimental
part analyzes the evolutionary process and discusses the inhibitor candidates.Comment: 15 pages, 7 figures, submitted to PPSN 202
Atazanavir and lopinavir profile in pregnant women with HIV: tolerability, activity and pregnancy outcomes in an observational national study
Background: Atazanavir and lopinavir represent the main HIV protease inhibitors recommended in pregnancy, but comparative data in pregnant women are limited. Methods: Women from a national observational study, exposed in pregnancy to either atazanavir or lopinavir, were compared for glucose and lipid profiles, liver function tests, CD4 count, HIV RNA and main pregnancy outcomes. Statistical methods included univariate and multivariable analyses.
Results: The study population included 428 pregnancies (lopinavir, 322; atazanavir, 106). The lopinavir group was characterized by higher rates of HIV diagnosis in pregnancy and treatment indication for maternal health, lower CD4 counts, higher HIV RNA levels, less frequent antiretroviral treatment at conception and shorter duration of drug exposure during pregnancy. No differences in pregnancy outcomes, glucose metabolism and weight gain
were observed. The two groups also showed in a multivariable analysis similar odds for detectable HIV RNA in the third trimester (adjusted OR 0.85, 95% CI 0.35–2.10, P1⁄40.730). Total lipid levels were significantly higher in the lopinavir group (median values in the third trimester 239 versus 221 mg/dL for total cholesterol and 226 versus 181 mg/dL for triglycerides; P,0.001 for both comparisons) and bilirubin levels were significantly higher in the atazanavir group (1.53 versus 0.46 mg/dL, P,0.001).
Conclusions: In this observational study atazanavir and lopinavir showed similar safety and activity in pregnancy, with no differences in the main pregnancy outcomes. Atazanavir usewas associated with a better lipid profile and with higher bilirubin levels. Overall, the study findings confirm that these two HIV protease inhibitors represent equally valid alternative options
The plasmin-antiplasmin system: structural and functional aspects
The plasmin-antiplasmin system plays a key role in blood coagulation and fibrinolysis. Plasmin and α2-antiplasmin are primarily responsible for a controlled and regulated dissolution of the fibrin polymers into soluble fragments. However, besides plasmin(ogen) and α2-antiplasmin the system contains a series of specific activators and inhibitors. The main physiological activators of plasminogen are tissue-type plasminogen activator, which is mainly involved in the dissolution of the fibrin polymers by plasmin, and urokinase-type plasminogen activator, which is primarily responsible for the generation of plasmin activity in the intercellular space. Both activators are multidomain serine proteases. Besides the main physiological inhibitor α2-antiplasmin, the plasmin-antiplasmin system is also regulated by the general protease inhibitor α2-macroglobulin, a member of the protease inhibitor I39 family. The activity of the plasminogen activators is primarily regulated by the plasminogen activator inhibitors 1 and 2, members of the serine protease inhibitor superfamil
Hepatitis C virus cell-cell transmission and resistance to direct-acting antiviral agents
Hepatitis C virus (HCV) is transmitted between hepatocytes via classical cell entry but also uses direct cell-cell transfer to infect neighboring hepatocytes. Viral cell-cell transmission has been shown to play an important role in viral persistence allowing evasion from neutralizing antibodies. In contrast, the role of HCV cell-cell transmission for antiviral resistance is unknown. Aiming to address this question we investigated the phenotype of HCV strains exhibiting resistance to direct-acting antivirals (DAAs) in state-of-the-art model systems for cell-cell transmission and spread. Using HCV genotype 2 as a model virus, we show that cell-cell transmission is the main route of viral spread of DAA-resistant HCV. Cell-cell transmission of DAA-resistant viruses results in viral persistence and thus hampers viral eradication. We also show that blocking cell-cell transmission using host-targeting entry inhibitors (HTEIs) was highly effective in inhibiting viral dissemination of resistant genotype 2 viruses. Combining HTEIs with DAAs prevented antiviral resistance and led to rapid elimination of the virus in cell culture model. In conclusion, our work provides evidence that cell-cell transmission plays an important role in dissemination and maintenance of resistant variants in cell culture models. Blocking virus cell-cell transmission prevents emergence of drug resistance in persistent viral infection including resistance to HCV DAAs
A Study of Archiving Strategies in Multi-Objective PSO for Molecular Docking
Molecular docking is a complex optimization problem aimed at predicting the position of a ligand molecule in the active site of a receptor with the lowest binding energy. This problem can be formulated as a bi-objective optimization problem by minimizing the binding energy and the Root Mean Square Deviation (RMSD) difference in the coordinates of ligands. In this context, the SMPSO multi-objective swarm-intelligence algorithm has shown a remarkable performance. SMPSO is characterized by having an external archive used to store the non-dominated solutions and also as the basis of the leader selection strategy. In this paper, we analyze several SMPSO variants based on different archiving strategies in the scope of a benchmark of molecular docking instances. Our study reveals that the SMPSOhv, which uses an hypervolume contribution based archive, shows the overall best performance.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
The hyaluronan-binding serine protease from human plasma cleaves HMW and LMW kininogen and releases bradykinin
The influence of the hyaluronanbinding protease (PHBSP), a plasma enzyme with FVII- and pro-urokinase-activating potency, on components of the contact phase (kallikrein/kinin) system was investigated. No activation or cleavage of the proenzymes involved in the contact phase system was observed. The procofactor high molecular weight kininogen (HK), however, was cleaved in vitro by PHBSP in the absence of any charged surface, releasing the activated cofactor and the vasoactive nonapeptide bradykinin. Glycosoaminoglycans strongly enhanced the reaction. The cleavage was comparable to that of plasma kallikrein, but clearly different from that of coagulation factor FXIa. Upon extended incubation with PHBSP, the light chain was further processed, partially removing about 60 amino acid residues from the Nterminus of domain D5 of the light chain. These cleavage site(s) were distinct from plasma kallikrein or FXIa cleavage sites. PHBSP and, more interestingly, also plasma kallikrein could cleave low molecular weight kininogen in vitro, indicating that domains D5(H) and D6(H) are no prerequisite for kininogen cleavage. PHBSP was also able to release bradykinin from HK in plasma where the pro-cofactor circulates predominantly in complex with plasma kallikrein or FXI. In conclusion, PHBSP represents a novel kininogen-cleaving and bradykinin-releasing enzyme in plasma that shares significant catalytic similarities with plasma kallikrein. Since they are structurally unrelated in their heavy chains (propeptide), their similar in vivo catalytic activities might be directed at distinct sites where PHBSP could induce processes that are related to the kallikrein/kinin system
Differential in vitro and in vivo effect of barley cysteine and serine protease inhibitors on phytopathogenic microorganisms
Protease inhibitors from plants have been involved in defence mechanisms against pests and pathogens. Phytocystatins and trypsin/α-amylase inhibitors are two of the best characterized protease inhibitor families in plants. In barley, thirteen cystatins (HvCPI-1 to 13) and the BTI-CMe trypsin inhibitor have been previously studied. Their capacity to inhibit pest digestive proteases, and the negative in vivo effect caused by plants expressing these inhibitors on pests support the defence function of these proteins. Barley cystatins are also able to inhibit in vitro fungal growth. However, the antifungal effect of these inhibitors in vivo had not been previously tested. Moreover, their in vitro and in vivo effect on plant pathogenous bacteria is still unknown. In order to obtain new insights on this feature, in vitro assays were made against different bacterial and fungal pathogens of plants using the trypsin inhibitor BTI-CMe and the thirteen barley cystatins. Most barley cystatins and the BTI-CMe inhibitor were able to inhibit mycelial growth but no bacterial growth. Transgenic Arabidopsis plants independently expressing the BTI-CMe inhibitor and the cystatin HvCPI-6 were tested against the same bacterial and fungal pathogens. Neither the HvCPI-6 expressing transgenic plants nor the BTI-CMe ones were more resistant to plant pathogen fungi and bacteria than control Arabidopsis plants. The differences observed between the in vitro and in planta assays against phytopathogenic fungi are discusse
Personalizing HIV therapy, mission impossible?
Sustained HIV suppression depends on a number of factors including therapy adherence, management of side effects, viral resistance and individual characteristics of patients and therapeutic settings. Treatment response rates range up to 90% in therapy naïve patients but decline to approximately 50% in patients who received several antiretrovirals during treatment history. Furthermore, HIV protease inhibitors (PI) and non nucleoside reverse transcriptase inhibitors (NNRTI) plasma concentrations display high inter- and intra individual variability and the therapeutic window is comparably narrow. In this therapeutic setting the personalization of dosing regimens has been suggested in many cases to tailor the ARV plasma concentrations with the intention to maximize therapy success and minimize side effects in the individual. However, personalizing therapy by modifying the dosing regimen bears the danger of losing therapeutic efficacy, increasing side effects or causing viral resistance.
This topical review identifies pharmacokinetic and pharmacodynamic models of antiretroviral therapy appraising the potential application to HIV therapy and discusses its future in the light of new drug classes and fix-dose combinations
- …
