2,355,639 research outputs found
First-Order Asymptotics of Path-Dependent Derivatives in Multiscale Stochastic Volatility Environment
In this paper, we extend the first-order asymptotics analysis of Fouque et
al. to general path-dependent financial derivatives using Dupire's functional
Ito calculus. The main conclusion is that the market group parameters
calibrated to vanilla options can be used to price to the same order exotic,
path-dependent derivatives as well. Under general conditions, the first-order
condition is represented by a conditional expectation that could be numerically
evaluated. Moreover, if the path-dependence is not too severe, we are able to
find path-dependent closed-form solutions equivalent to the fist-order
approximation of path-independent options derived in Fouque et al.
Additionally, we exemplify the results with Asian options and options on
quadratic variation
Internet routing paths stability model and relation to forwarding paths
Analysis of real datasets to characterize the local stability properties of the Internet routing paths suggests that extending the route selection criteria to account for such property would not increase the routing path length. Nevertheless, even if selecting a more stable routing path could be considered as valuable from a routing perspective, it does not necessarily imply that the associated forwarding path would be more stable. Hence, if the dynamics of the Internet routing and forwarding system show different properties, then one can not straightforwardly derive the one from the other. If this assumption is verified, then the relationship between the stability of the forwarding path (followed by the traffic) and the corresponding routing path as selected by the path-vector routing algorithm requires further characterization. For this purpose, we locally relate, i.e., at the router level, the stability properties of routing path with the corresponding forwarding path. The proposed stability model and measurement results verify this assumption and show that, although the main cause of instability results from the forwarding plane, a second order effect relates forwarding and routing path instability events. This observation provides the first indication that differential stability can safely be taken into account as part of the route selection process
Time-Optimal Path Tracking via Reachability Analysis
Given a geometric path, the Time-Optimal Path Tracking problem consists in
finding the control strategy to traverse the path time-optimally while
regulating tracking errors. A simple yet effective approach to this problem is
to decompose the controller into two components: (i)~a path controller, which
modulates the parameterization of the desired path in an online manner,
yielding a reference trajectory; and (ii)~a tracking controller, which takes
the reference trajectory and outputs joint torques for tracking. However, there
is one major difficulty: the path controller might not find any feasible
reference trajectory that can be tracked by the tracking controller because of
torque bounds. In turn, this results in degraded tracking performances. Here,
we propose a new path controller that is guaranteed to find feasible reference
trajectories by accounting for possible future perturbations. The main
technical tool underlying the proposed controller is Reachability Analysis, a
new method for analyzing path parameterization problems. Simulations show that
the proposed controller outperforms existing methods.Comment: 6 pages, 3 figures, ICRA 201
Path Checking for MTL and TPTL over Data Words
Metric temporal logic (MTL) and timed propositional temporal logic (TPTL) are
quantitative extensions of linear temporal logic, which are prominent and
widely used in the verification of real-timed systems. It was recently shown
that the path checking problem for MTL, when evaluated over finite timed words,
is in the parallel complexity class NC. In this paper, we derive precise
complexity results for the path-checking problem for MTL and TPTL when
evaluated over infinite data words over the non-negative integers. Such words
may be seen as the behaviours of one-counter machines. For this setting, we
give a complete analysis of the complexity of the path-checking problem
depending on the number of register variables and the encoding of constraint
numbers (unary or binary). As the two main results, we prove that the
path-checking problem for MTL is P-complete, whereas the path-checking problem
for TPTL is PSPACE-complete. The results yield the precise complexity of model
checking deterministic one-counter machines against formulae of MTL and TPTL
Polynomial fixed-parameter algorithms : a case study for longest path on interval graphs.
We study the design of fixed-parameter algorithms for problems already known to be solvable in polynomial time.
The main motivation is to get more efficient algorithms for problems with unattractive polynomial running times. Here, we focus on a fundamental graph problem: Longest Path; it is NP-hard in general but known to be solvable in O(n^4) time on n-vertex interval graphs. We show how to solve Longest Path on Interval Graphs, parameterized by vertex deletion number k to proper interval graphs, in O(k^9n) time. Notably, Longest Path is trivially solvable in linear time on proper interval graphs, and the parameter value k can be approximated up to a factor of 4 in linear time. From a more general perspective, we believe that using parameterized complexity analysis for polynomial-time solvable problems offers a very fertile ground for future studies for all sorts of algorithmic problems. It may enable a refined understanding of efficiency aspects for polynomial-time solvable problems, similarly to what classical parameterized complexity analysis does for NP-hard problems
- …
