20,066 research outputs found
Recommended from our members
Hierarchical Structure with Highly Ordered Macroporous-Mesoporous Metal-Organic Frameworks as Dual Function for CO2 Fixation.
As a major greenhouse gas, the continuous increase of carbon dioxide (CO2) in the atmosphere has caused serious environmental problems, although CO2 is also an abundant, inexpensive, and nontoxic carbon source. Here, we use metal-organic framework (MOF) with highly ordered hierarchical structure as adsorbent and catalyst for chemical fixation of CO2 at atmospheric pressure, and the CO2 can be converted to the formate in excellent yields. Meanwhile, we have successfully integrated highly ordered macroporous and mesoporous structures into MOFs, and the macro-, meso-, and microporous structures have all been presented in one framework. Based on the unique hierarchical pores, high surface area (592 m2/g), and high CO2 adsorption capacity (49.51 cm3/g), the ordered macroporous-mesoporous MOFs possess high activity for chemical fixation of CO2 (yield of 77%). These results provide a promising route of chemical CO2 fixation through MOF materials
Macroporous Photonic Crystal Membrane, Methods of Making, and Methods of Use
In accordance with the purpose(s) of the present disclosure, as embodied and broadly described herein, embodiments of the present disclosure, in one aspect, relate to macroporous photonic crystal membranes, structures including macroporous photonic crystal membranes, devices including macroporous photonic crystal membranes, methods of using macroporous photonic crystal membranes, methods of making macroporous photonic crystal membranes, and the like
Study of resonant modes in a 700 nm pitch macroporous silicon photonic crystal
In this study the modes produced by a defect inserted in a macroporous silicon (MP) photonic crystal (PC) have been studied theoretical and experimentally. In particular, the transmitted and reflected spectra have been analyzed for variations in the defect’s length and width. The performed simulations show that the resonant frequency is more easily adjusted for the fabricated samples by length tuning rather than width. The optimum resonance peak results when centered in the PC bandgap. The changes in the defect geometry result in small variations of the optical response of the PC. The resonance frequency is most sensitive to length variations, while the mode linewidth shows greater change with the defect width variation. Several MPS photonic crystals were fabricated by the electrochemical etching (EE) process with optical response in the range of 5.8 µm to 6.5 µm. Results of the characterization are in good agreement with simulations. Further samples were fabricated consisting of ordered modulated pores with a pitch of 700 nm. This allowed to reduce the vertical periodicity and therefore to have the optical response in the range of 4.4 µm to 4.8 µm. To our knowledge, modes working in this range of wavelengths have not been previously reported in 3-d MPS structures. Experimental results match with simulations, showing a linear relationship between the defect’s length and working frequency inside the bandgap. We demonstrate the possibility of tailoring the resonance peak in both ranges of wavelengths, where the principal absorption lines of different gases in the mid infrared are placed. This makes these structures very promising for their application to compact gas sensors.Postprint (author's final draft
Highly permeable macroporous polymers synthesized from pickering medium and high internal phase emulsion templates
Open porous poly-Plckerlng-M/HIPEs with permeabilities of up to 2.6 D were prepared by polymerisation of PickeringM/HIPEs to which small amounts of surfactant were added. The permeability of these poly-Pickering-M/HIPEs is more than 5 times that of conventional polyHI PEs. This approach allows the synthesis of a novel class of permeable particle reinforced macroporous polymers with significant potential for practical exploitation. (Figure Presented) © 2010 WILEY-VCH VerlagGmbH S.Co. KCaA, Weinheim
Macroporous materials: microfluidic fabrication, functionalization and applications
This article provides an up-to-date highly comprehensive overview (594 references) on the state of the art of the synthesis and design of macroporous materials using microfluidics and their applications in different fields
Study of Ni Metallization in Macroporous Si Using Wet Chemistry for Radio Frequency Cross-Talk Isolation in Mixed Signal Integrated Circuits.
A highly conductive moat or Faraday cage of through-the-wafer thickness in Si substrate was proposed to be effective in shielding electromagnetic interference thereby reducing radio frequency (RF) cross-talk in high performance mixed signal integrated circuits. Such a structure was realized by metallization of selected ultra-high-aspect-ratio macroporous regions that were electrochemically etched in p- Si substrates. The metallization process was conducted by means of wet chemistry in an alkaline aqueous solution containing Ni2+ without reducing agent. It is found that at elevated temperature during immersion, Ni2+ was rapidly reduced and deposited into macroporous Si and a conformal metallization of the macropore sidewalls was obtained in a way that the entire porous Si framework was converted to Ni. A conductive moat was as a result incorporated into p- Si substrate. The experimentally measured reduction of crosstalk in this structure is 5~18 dB at frequencies up to 35 GHz
Porous silicon solar cells
We developed a new process for the fabrication of crystalline solar cell, based on an ultrathin silicon membrane, taking advantage of porous silicon technology. The suggested architecture allows the costs reduction of silicon based solar cell reusing the same wafer to produce a great number of membranes. The architectures combines the efficiency of crystalline silicon solar cell, with the great absorption of porous silicon, and with a more efficient way to use the material. The new process faces the main challenge to achieve an effective and not expensive passivation of the porous silicon surface, in order to achieve an efficient photovoltaic device. At the same time the process suggests a smart way to selective doping of the macroporous silicon layers despite the through-going pores. © 2015 IEEE.
SciVal Topic Prominence
Topic: Porous silicon | Silicon | macroporous silicon
Prominence percentile: 66.984
Author keywords
nanofabricationporous siliconsilicon nanoelectronicssolar cells
Indexed keywords
Engineering controlled terms:
Crystalline materialsNanoelectronicsNanostructured materialsNanotechnologyPorous siliconSiliconSilicon wafersSolar cells
Engineering uncontrolled terms
Crystalline silicon solar cellsCrystalline solar cellsMacro porous siliconPhotovoltaic devicesPorous silicon surfacesPorous silicon technologySilicon nanoelectronicsUltrathin silicon membrane
Engineering main heading:
Silicon solar cells
ISBN: 978-146738155-0
Source Type: Conference Proceeding
Original language: English
DOI: 10.1109/NANO.2015.7388710
Document Type: Conference Paper
Sponsors: Nanotechnology Council
Publisher: Institute of Electrical and Electronics Engineers Inc.
References (9)
View in search results format ▻
All
Export Print E-mail Save to PDF Create bibliography
1
(2012) International Technology Roadmap for Photovoltaics Results 2012. Cited 24 times.
ITRPV, Third Edition, Berlin 2012
www.ITRPV.net
2
Lehmann, V., Honlein, W., Stengl, R., Willer, J., Wendt, H.
(1992) Verfahren Zur Herstellung Einer Solarzelle Aus Einer Substratscheibe. Cited 6 times.
German patent DE4204455C1; Filing date: 29. 01.
3
Brendel, R., Ernst, M.
Macroporous Si as an absorber for thin-film solar cells
(2010) Physica Status Solidi - Rapid Research Letters, 4 (1-2), pp. 40-42. Cited 22 times.
http://www3.interscience.wiley.com/cgi-bin/fulltext/123215552/PDFSTART
doi: 10.1002/pssr.200903372
Locate full-text(opens in a new window)
View at Publisher
4
Ernst, M., Brendel, R., Ferré, R., Harder, N.-P.
Thin macroporous silicon heterojunction solar cells
(2012) Physica Status Solidi - Rapid Research Letters, 6 (5), pp. 187-189. Cited 16 times.
doi: 10.1002/pssr.201206113
Locate full-text(opens in a new window)
View at Publisher
5
Ernst, M., Brendel, R.
Macroporous silicon solar cells with an epitaxial emitter
(2013) IEEE Journal of Photovoltaics, 3 (2), art. no. 6472253, pp. 723-729. Cited 7 times.
doi: 10.1109/JPHOTOV.2013.2247094
Locate full-text(opens in a new window)
View at Publisher
6
Ernst, M., Schulte-Huxel, H., Niepelt, R., Kajari-Schröder, S., Brendel, R.
Thin crystalline macroporous silicon solar cells with ion implanted emitter (Open Access)
(2013) Energy Procedia, 38, pp. 910-918. Cited 2 times.
http://www.sciencedirect.com/science/journal/18766102
doi: 10.1016/j.egypro.2013.07.364
Locate full-text(opens in a new window)
View at Publisher
7
Nenzi, P., Kholostov, K., Crescenzi, R., Bondarenka, H., Bondarenko, V., Balucani, M.
Electrochemically etched TSV for porous silicon interposer technologies
(2013) Proceedings - Electronic Components and Technology Conference, art. no. 6575887, pp. 2201-2207. Cited 2 times.
ISBN: 978-147990233-0
doi: 10.1109/ECTC.2013.6575887
Locate full-text(opens in a new window)
View at Publisher
8
Perticaroli, S., Varlamava, V., Palma, F.
Microwave sensing of nanostructured semiconductor surfaces
(2014) Applied Physics Letters, 104 (1), art. no. 013110. Cited 3 times.
doi: 10.1063/1.4861424
Locate full-text(opens in a new window)
View at Publisher
9
De Cesare, G., Caputo, D., Tucci, M.
Electrical properties of ITO/crystalline-silicon contact at different deposition temperatures
(2012) IEEE Electron Device Letters, 33 (3), art. no. 6142006, pp. 327-329. Cited 28 times.
doi: 10.1109/LED.2011.2180356
Locate full-text(opens in a new window)
View at Publisher
© Copyright 2017 Elsevier B.V., All rights reserved.
◅ Back to results
◅ Previous
3of10
Next ▻
Top of page
Metrics
Learn more about article metrics in Scopus (opens in a new window)
0
Citations in Scopus
0
Learn more about Field-Weighted Citation Impact
Field-Weighted Citation Impact
PlumX Metrics
Usage, Captures, Mentions, Social Media and Citations beyond Scopus.
Cited by 0 documents
Inform me when this document is cited in Scopus:
Set citation alert ▻
Set citation feed ▻
Related documents
Thin crystalline macroporous silicon solar cells with ion implanted emitter
Ernst, M. , Schulte-Huxel, H. , Niepelt, R.
(2013) Energy Procedia
Multilayer etching for kerf-free solar cells from macroporous silicon
Schäfer, S. , Ernst, M. , Kajari-Schröder, S.
(2013) Energy Procedia
Macroporous silicon solar cells with an epitaxial emitter
Ernst, M. , Brendel, R.
(2013) IEEE Journal of Photovoltaics
View all related documents based on references
Find more related documents in Scopus based on:
Authors ▻
Keywords ▻
About Scopus
What is Scopus
Content coverage
Scopus blog
Scopus API
Privacy matters
Language
日本語に切り替える
切换到简体中文
切換到繁體中文
Русский язык
Customer Service
Help
Contact us
Elsevier
Terms and conditions ↗
Privacy policy ↗
Copyright © 2018 Elsevier B.V ↗. All rights reserved. Scopus® is a registered trademark of Elsevier B.V.
We use cookies to help provide and enhance our service and tailor content. By continuing, you agree to the use of cookies.
RELX Group
We developed a new process for the fabrication of crystalline solar cell, based on an ultrathin silicon membrane, taking advantage of porous silicon technology. The suggested architecture allows the costs reduction of silicon based solar cell reusing the same wafer to produce a great number of membranes. The architectures combines the efficiency of crystalline silicon solar cell, with the great absorption of porous silicon, and with a more efficient way to use the material. The new process faces the main challenge to achieve an effective and not expensive passivation of the porous silicon surface, in order to achieve an efficient photovoltaic device. At the same time the process suggests a smart way to selective doping of the macroporous silicon layers despite the through-going pores
Enhanced surface interaction of water confined in hierarchical porous polymers induced by hydrogen bonding
Hierarchical porous polymer systems are increasingly applied to catalysis, bioengineering, or separation technology because of the versatility provided by the connection of mesopores with percolating macroporous structures. Nuclear magnetic resonance (NMR) is a suitable technique for the study of such systems as it can detect signals stemming from the confined liquid and translate this information into pore size, molecular mobility, and liquid−surface interactions. We focus on the properties of water confined in macroporous polymers of ethylene glycol dimethacrylate and 2-hydroxyethyl methacrylate [poly- (EGDMA-co-HEMA)] with different amounts of cross-linkers, in which a substantial variation of hydroxyl groups is achieved. As soft polymer scaffolds may swell upon saturation with determined liquids, the use of NMR is particularly important as it measures the system in its operational state. This study combines different NMR techniques to obtain information on surface interactions of water with hydrophilic polymer chains. A transition from a surface-induced relaxation in which relaxivity depends on the pore size to a regime where the organic pore surface strongly restricts water diffusion is observed. Surface affinities are defined through the molecular residence times near the network surface.Fil: Silletta, Emilia Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Velasco, Manuel Isaac. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Gomez, Cesar Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Strumia, Miriam Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Stapf, Siegfried. Technische Universität Ilmenau; AlemaniaFil: Mattea, Carlos. Technische Universität Ilmenau; AlemaniaFil: Monti, Gustavo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Acosta, Rodolfo Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentin
- …
