7,370 research outputs found
Effect of structure on current and potential distributions in porous electrode
Porous electrodes generally contain constricted macropores and localized micropores. The effects of the macropore constrictions on the resistance of a capillary were studied and an analytical model was developed for predicting the current distribution in a constricted macropore which directly includes constriction effects and does not require an empirical tortuosity parameter. The current and concentration distributions in localized micropores were also investigated and it was shown that the microporous area is fully accessible to charge and mass transfer processes. From these analyses it was concluded that the micropores primarily affect the kinetics of the interfacial processes by contributing to the interfacial area, while the macropores impose ohmic and mass transport limitations through the volume of the porous electrode
Prediction of biopore- and matrix-dominated flow from X-ray CT-derived macropore network characteristics
Peer reviewedPublisher PD
Mesopore etching under supercritical conditions – A shortcut to hierarchically porous silica monoliths
Hierarchically porous silica monoliths are obtained in the two-step Nakanishi process, where formation of a macro microporous silica gel is followed by widening micropores to mesopores through surface etching. The latter step is carried out through hydrothermal treatment of the gel in alkaline solution and necessitates a lengthy solvent exchange of the aqueous pore fluid before the ripened gel can be dried and calcined into a mechanically stable macro mesoporous monolith. We show that using an ethanol water (95.6/4.4, v/v) azeotrope as supercritical fluid for mesopore etching eliminates the solvent exchange, ripening, and drying steps of the classic route and delivers silica monoliths that can withstand fast heating rates for calcination. The proposed shortcut decreases the overall preparation time from ca. one week to ca. one day. Porosity data show that the alkaline conditions for mesopore etching are crucial to obtain crack-free samples with a narrow mesopore size distribution. Physical reconstruction of selected samples by confocal laser scanning microscopy and subsequent morphological analysis confirms that monoliths prepared via the proposed shortcut possess the high homogeneity of silica skeleton and macropore space that is desirable in adsorbents for flow-through applications
High surface area, emulsion-templated carbon foams by activation of polyHIPEs derived from Pickering emulsions.
Carbon foams displaying hierarchical porosity and excellent surface areas of >1400 m2/g can be produced by the activation of macroporous poly(divinylbenzene). Poly(divinylbenzene) was synthesized from the polymerization of the continuous, but minority, phase of a simple high internal phase Pickering emulsion. By the addition of KOH, chemical activation of the materials is induced during carbonization, producing Pickering-emulsion templated carbon foams, or carboHIPEs, with tailorable macropore diameters and surface areas almost triple that of those previously reported. The retention of the customizable, macroporous open-cell structure of the poly(divinylbenzene) precursor and the production of a large degree of microporosity during activation leads to tailorable carboHIPEs with excellent surface areas
Size-based ion selectivity of micropore electric double layers in capacitive deionization electrodes
Capacitive deionization (CDI) is a fast-emerging technology most commonly
applied to brackish water desalination. In CDI, salt ions are removed from the
feedwater and stored in electric double layers (EDLs) within micropores of
electrically charged porous carbon electrodes. Recent experiments have
demonstrated that CDI electrodes exhibit selective ion removal based on ion
size, with the smaller ion being preferentially removed in the case of
equal-valence ions. However, state-of-the-art CDI theory does not capture this
observed selectivity, as it assumes volume-less point ions in the micropore
EDLs. We here present a theory which includes multiple couterionic species, and
relaxes the point ion assumption by incorporating ion volume exclusion
interactions into a description of the micropore EDLs. The developed model is a
coupled set of nonlinear algebraic equations which can be solved for micropore
ion concentrations and electrode Donnan potential at cell equilibrium. We
demonstrate that this model captures key features of the experimentally
observed size-based ion selectivity of CDI electrodes
Theory of membrane capacitive deionization including the effect of the electrode pore space
Membrane capacitive deionization (MCDI) is a technology for water desalination based on applying an electrical field between two oppositely placed porous electrodes. Ions are removed from the water flowing through a channel in between the electrodes and are stored inside the electrodes. Ion-exchange membranes are placed in front of the electrodes allowing for counterion transfer from the channel into the electrode, while retaining the coions inside the electrode structure. We set up an extended theory for MCDI which includes in the description for the porous electrodes not only the electrostatic double layers (EDLs) formed inside the porous (carbon) particles, but also incorporates the role of the transport pathways in the electrode, i.e., the interparticle pore space. Because in MCDI the coions are inhibited from leaving the electrode region, the interparticle porosity becomes available as a reservoir to store salt, thereby increasing the total salt storage capacity of the porous electrode. A second advantage of MCDI is that during ion desorption (ion release) the voltage can be reversed. In that case the interparticle porosity can be depleted of counterions, thereby increasing the salt uptake capacity and rate in the next cycle. In this work, we compare both experimentally and theoretically adsorption/desorption cycles of MCDI for desorption at zero voltage as well as for reversed voltage, and compare with results for CDI. To describe the EDL-structure a novel modified Donnan model is proposed valid for small pores relative to the Debye length
SWAP Version 3.2. Theory description and user manual
SWAP 3.2 simulates transport of water, solutes and heat in the vadose zone. It describes a domain from the top of canopy into the groundwater which may be in interaction with a surface water system. The program has been developed by Alterra and Wageningen University, and is designed to simulate transport processes at field scale and during whole growing seasons. This is a new release with special emphasis on numerical stability, macro pore flow, and options for detailed meteorological input and linkage to other models. This manual describes the theoretical background, model use, input requirements and output tables
- …