34,395 research outputs found

    Animal community dynamics at senescent and active vents at the 9° N East Pacific Rise after a volcanic eruption

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gollner, S., Govenar, B., Arbizu, P. M., Mullineaux, L. S., Mills, S., Le Bris, N., Weinbauer, M., Shank, T. M., & Bright, M. Animal community dynamics at senescent and active vents at the 9° N East Pacific Rise after a volcanic eruption. Frontiers in Marine Science, 6, (2020): 832, doi:10.3389/fmars.2019.00832.In 2005/2006, a major volcanic eruption buried faunal communities over a large area of the 9°N East Pacific Rise (EPR) vent field. In late 2006, we initiated colonization studies at several types of post eruption vent communities including those that either survived the eruption, re-established after the eruption, or arisen at new sites. Some of these vents were active whereas others appeared senescent. Although the spatial scale of non-paved (surviving) vent communities was small (several m2 compared to several km2 of total paved area), the remnant individuals at surviving active and senescent vent sites may be important for recolonization. A total of 46 meio- and macrofauna species were encountered at non-paved areas with 33 of those species detected were also present at new sites in 2006. The animals living at non-paved areas represent refuge populations that could act as source populations for new vent sites directly after disturbance. Remnants may be especially important for the meiofauna, where many taxa have limited or no larval dispersal. Meiofauna may reach new vent sites predominantly via migration from local refuge areas, where a reproductive and abundant meiofauna is thriving. These findings are important to consider in any potential future deep-sea mining scenario at deep-sea hydrothermal vents. Within our 4-year study period, we regularly observed vent habitats with tubeworm assemblages that became senescent and died, as vent fluid emissions locally stopped at patches within active vent sites. Senescent vents harbored a species rich mix of typical vent species as well as rare yet undescribed species. The senescent vents contributed significantly to diversity at the 9°N EPR with 55 macrofaunal species (11 singletons) and 74 meiofaunal species (19 singletons). Of these 129 species associated with senescent vents, 60 have not been reported from active vents. Tubeworms and other vent megafauna not only act as foundation species when alive but provide habitat also when dead, sustaining abundant and diverse small sized fauna.We received funding from the Austrian FWF (GrantP20190-B17; MB), the U.S. National Science Foundation (OCE-0424953; to LM, D. McGillicuddy, A. Thurnherr, J. Ledwell, and W. Lavelle; and OCE-1356738 to LM), and the European Union Seventh Framework Programme (FP7/2007-2013) under the MIDAS project, Grant Agreement No. 603418. Ifremer and CNRS (France) supported NL cruise participation and sensor developments. BG was supported by a postdoctoral fellowship from the Deep Ocean Exploration Institute at WHOI (United States). TS was supported by the U.S. National Science Foundation (OCE-0327261 to TS and OCE-0937395 to TS and BG)

    After the Fall: Legacy Effects of Biogenic Structure on Wind-Generated Ecosystem Processes Following Mussel Bed Collapse

    Get PDF
    Blue mussels (Mytilus edulis) are ecosystem engineers with strong effects on species diversity and abundances. Mussel beds appear to be declining in the Gulf of Maine, apparently due to climate change and predation by the invasive green crab, Carcinus maenas. As mussels die, they create a legacy of large expanses of shell biogenic structure. In Maine, USA, we used bottom traps to examine effects of four bottom cover types (i.e., live mussels, whole shells, fragmented shells, bare sediment) and wind condition (i.e., days with high, intermediate, and low values) on flow-related ecosystem processes. Significant differences in transport of sediment, meiofauna, and macrofauna were found among cover types and days, with no significant interaction between the two factors. Wind condition had positive effects on transport. Shell hash, especially fragmented shells, had negative effects, possibly because it acted as bed armor to reduce wind-generated erosion and resuspension. Copepods had the greatest mobility and shortest turnover times (0.15 d), followed by nematodes (1.96 d) and the macrofauna dominant, Tubificoides benedeni (2.35 d). Shell legacy effects may play an important role in soft-bottom system responses to wind-generated ecosystem processes, particularly in collapsed mussel beds, with implications for recolonization, connectivity, and the creation and maintenance of spatial pattern

    Benthic trophic interactions in an Antarctic shallow water ecosystem affected by recent glacier retreat

    Get PDF
    The western Antarctic Peninsula is experiencing strong environmental changes as a consequence of ongoing regional warming. Glaciers in the area are retreating rapidly and increased sediment-laden meltwater runoff threatens the benthic biodiversity at shallow depths. We identified three sites with a distinct glacier-retreat related history and different levels of glacial influence in the inner part of Potter Cove (King George Island, South Shetland Islands), a fjord-like embayment impacted since the 1950s by a tidewater glacier retreat. We compared the soft sediment meio- and macrofauna isotopic niche widths (delta C-13 and delta N-15 stable isotope analysis) at the three sites to investigate possible glacier retreat-related influences on benthic trophic interactions. The isotopic niches were locally shaped by the different degrees of glacier retreat-related disturbance within the Cove. Wider isotopic niche widths were found at the site that has become ice-free most recently, and narrower niches at the older ice-free sites. At an intermediate state of glacier retreat-related disturbance (e.g. via ice-growler scouring) species with different strategies could settle. The site at the earliest stage of post-retreat development was characterized by an assemblage with lower trophic redundancy. Generally, the isotopic niche widths increased with increasing size spectra of organisms within the community, excepting the youngest assemblage, where the pioneer colonizer meiofauna size class displayed the highest isotopic niche width. Meiofauna at all sites generally occupied positions in the isotopic space that suggested a detrital-pool food source and/or the presence of predatory taxa. In general ice scour and glacial impact appeared to play a two-fold role within the Cove: i) either stimulating trophic diversity by allowing continuous re-colonization of meiofaunal species or, ii) over time driving the benthic assemblages into a more compact trophic structure with increased connectedness and resource recycling

    Effects of hypoxia on benthic macrofauna and bioturbation in the Estuary and Gulf of St. Lawrence, Canada

    Get PDF
    The bottom water in the 4300 m deep Lower St. Lawrence Estuary (LSLE) is persistently hypoxic in contrast to the normoxic bottom waters in the Gulf of St. Lawrence (GSL). We photographed the seabed at 11 stations in the Estuary and Gulf of St. Lawrence (EGSL) during the summers 2006 and 2007 and analysed the images to identify bioturbation traces (lebensspuren) and benthic macrofauna. The objective was to identify the environmental variables that influence the density and diversity of benthic macrofauna and bioturbation traces, and the differences that exist among regions with high, medium and low oxygen levels in the bottom water. The bottom water oxygen concentration is the variable that best explains the densities of total-traces as well as surface-traces. However, the density of these traces was higher in hypoxic regions than in well-oxygenated regions. The higher density of traces in the hypoxic region of the LSLE is mainly due to the activities of the surface deposit feeder Ophiura sp., which occurs in large numbers in this region. Possible explanations explored are stress behaviour of the organisms in response to hypoxia and different benthic macrofauna community structures between the hypoxic regions of the LSLE and the normoxic regions of the GSL. In the former, surface deposit feeders and low-oxygen tolerant species dominate over suspension feeders and low-oxygen intolerant species

    Hydrocarbon influence on denitrification in bioturbated Mediterranean coastal sediments

    Get PDF
    An in situ experiment has been carried out inbioturbated Mediterranean coastal marine sediments (Gulfof Fos) in order to study the influence of hydrocarbons ondenitrification after 1, 4 and 6 months. In theabsence of hydrocarbons in the control sediments, the presenceof macrofauna stimulated denitrificationby 160%. This stimulation is induced by sediment reworkingthat favours both direct NO-3 supply fromthe water column and the penetration of O{2}, which in turnstimulated nitrification, the other source ofNO-3 in sediment. The presence of hydrocarbons in theexperimental sediments either stimulated orinhibited the denitrification. The denitrification response tothe presence of hydrocarbon is dependent onthe quantity of matter buried by the macrofauna activity. Insmall quantities, the organic matter relatedto hydrocarbons 120% enhanced the denitrification compared tothe controls. On the other hand, whenburied hydrocarbon concentrations were higher (>100 mgsaturated hydrocarbon fraction kg-1 drysediment), the denitrification was inhibited.On the basis of the results obtained, a descriptive model ofthe patterns of denitrification in relation to the presence ofmacrofauna and the distribution of hydrocarbons in sediments is proposed

    Short-term fate of phytodetritus in sediments across the arabian sea oxygen minimum zone

    Get PDF
    The short-term fate of phytodetritus was investigated across the Pakistan margin of the Arabian Sea at water depths ranging from 140 to 1850 m, encompassing the oxygen minimum zone (~100–1100 m). Phytodetritus sedimentation events were simulated by adding ~44 mmol 13C-labelled algal material per m2 to surface sediments in retrieved cores. Cores were incubated in the dark, at in situ temperature and oxygen concentrations. Overlying waters were sampled periodically, and cores were recovered and sampled (for organisms and sediments) after durations of two and five days. The labelled carbon was subsequently traced into bacterial lipids, foraminiferan and macrofaunal biomass, and dissolved organic and inorganic pools. The majority of the label (20 to 100%) was in most cases left unprocessed in the sediment at the surface. The largest pool of processed carbon was found to be respiration (0 to 25% of added carbon), recovered as dissolved inorganic carbon. Both temperature and oxygen were found to influence the rate of respiration. Macrofaunal influence was most pronounced at the lower part of the oxygen minimum zone where it contributed 11% to the processing of phytodetritus

    Influence of bioturbation on denitrification activity in Mediterranean coastal sediments:an in situ experimental approach

    Get PDF
    An in situ experiment was conducted in the French Mediterranean littoral (Gulf of Fos) from July 1993 to January 1994 using controls without macrofauna or natural sediments. After 1, 4 and 6 mo, sediment reworking and denitrification activities (natural and potential rates) were studied. The bacterial processes were stimulated by the bioturbating activity of the autochthonous infauna. The natural and potential denitrification rates were 160 and 280% higher, respectively, than in the controls. The increase of denitrification, occurring at different depths in the sediment with respect to time, was directly dependent on the macrofaunal activity

    Biological research of Grabia River - fifty years of activity

    Get PDF
    Grabia, a small still close to natural conditions lowland river, has been an object of special interest for Łódź hydrobiologists for more than 50 years. Over 100 scientific papers and over 100 master theses were produced in the Faculty of Biology and Environmental Protection University of Łódź. The initiator was Prof.L.K. Pawłowski who spent many years conducting research into the river. The ground and the first research objective was to recognize the fauna diversity. The checklist encompass almost 1000 invertebrate and 24 fish species. Taxonomy, biology and ecology of various taxa have made for many decades an essential trend of scientific activity. Special attention was dedicated to rotifers, leeches, branchiobdellids, snails and bivalves, gammarids and copepods as well as aquatic insects, fish and also diatoms. Some aspects of zoobenthos and Zooplankton communities ecology was the subject of 13 Ph.D.theses. The river with its rich animal and plant communities was also the subject of dynamics of river ecosystem research. The study on the structure of invertebrate assemblages on the background of habitat diversity has been recently conducted. The model may be treealed as a reference to the restoration of Europaean rivers and their valleys.Zadanie pt. „Digitalizacja i udostępnienie w Cyfrowym Repozytorium Uniwersytetu Łódzkiego kolekcji czasopism naukowych wydawanych przez Uniwersytet Łódzki” nr 885/P-DUN/2014 dofinansowane zostało ze środków MNiSW w ramach działalności upowszechniającej naukę
    corecore