1,403,617 research outputs found
Deep Learning for Forecasting Stock Returns in the Cross-Section
Many studies have been undertaken by using machine learning techniques,
including neural networks, to predict stock returns. Recently, a method known
as deep learning, which achieves high performance mainly in image recognition
and speech recognition, has attracted attention in the machine learning field.
This paper implements deep learning to predict one-month-ahead stock returns in
the cross-section in the Japanese stock market and investigates the performance
of the method. Our results show that deep neural networks generally outperform
shallow neural networks, and the best networks also outperform representative
machine learning models. These results indicate that deep learning shows
promise as a skillful machine learning method to predict stock returns in the
cross-section.Comment: 12 pages, 2 figures, 8 tables, accepted at PAKDD 201
Machine learning to analyze single-case data : a proof of concept
Visual analysis is the most commonly used method for interpreting data from singlecase designs, but levels of interrater agreement remain a concern. Although structured
aids to visual analysis such as the dual-criteria (DC) method may increase interrater
agreement, the accuracy of the analyses may still benefit from improvements. Thus, the
purpose of our study was to (a) examine correspondence between visual analysis and
models derived from different machine learning algorithms, and (b) compare the
accuracy, Type I error rate and power of each of our models with those produced by
the DC method. We trained our models on a previously published dataset and then
conducted analyses on both nonsimulated and simulated graphs. All our models
derived from machine learning algorithms matched the interpretation of the visual
analysts more frequently than the DC method. Furthermore, the machine learning
algorithms outperformed the DC method on accuracy, Type I error rate, and power.
Our results support the somewhat unorthodox proposition that behavior analysts may
use machine learning algorithms to supplement their visual analysis of single-case data,
but more research is needed to examine the potential benefits and drawbacks of such an
approach
- …
