976,297 research outputs found
Comparison of CSMA based MAC protocols of wireless sensor networks
Energy conservation has been an important area of interest in Wireless Sensor
networks (WSNs). Medium Access Control (MAC) protocols play an important role
in energy conservation. In this paper, we describe CSMA based MAC protocols for
WSN and analyze the simulation results of these protocols. We implemented
S-MAC, T-MAC, B-MAC, B-MAC+, X-MAC, DMAC and Wise-MAC in TOSSIM, a simulator
which unlike other simulators simulates the same code running on real hardware.
Previous surveys mainly focused on the classification of MAC protocols
according to the techniques being used or problem dealt with and presented a
theoretical evaluation of protocols. This paper presents the comparative study
of CSMA based protocols for WSNs, showing which MAC protocol is suitable in a
particular environment and supports the arguments with the simulation results.
The comparative study can be used to find the best suited MAC protocol for
wireless sensor networks in different environments.Comment: International Journal of AdHoc Network Systems, Volume 2, Number 2,
April 201
An efficient scalable scheduling mac protocol for underwater sensor networks
Underwater Sensor Networks (UWSNs) utilise acoustic waves with comparatively lower loss and longer range than those of electromagnetic waves. However, energy remains a challenging issue in addition to long latency, high bit error rate, and limited bandwidth. Thus, collision and retransmission should be efficiently handled at Medium Access Control (MAC) layer in order to reduce the energy cost and also to improve the throughput and fairness across the network. In this paper, we propose a new reservation-based distributed MAC protocol called ED-MAC, which employs a duty cycle mechanism to address the spatial-temporal uncertainty and the hidden node problem to effectively avoid collisions and retransmissions. ED-MAC is a conflict-free protocol, where each sensor schedules itself independently using local information. Hence, ED-MAC can guarantee conflict-free transmissions and receptions of data packets. Compared with other conflict-free MAC protocols, ED-MAC is distributed and more reliable, i.e., it schedules according to the priority of sensor nodes which based on their depth in the network. We then evaluate design choices and protocol performance through extensive simulation to study the load effects and network scalability in each protocol. The results show that ED-MAC outperforms the contention-based MAC protocols and achieves a significant improvement in terms of successful delivery ratio, throughput, energy consumption, and fairness under varying offered traffic and number of nodes
Portability, compatibility and reuse of MAC protocols across different IoT radio platforms
To cope with the diversity of Internet of Things (loT) requirements, a large number of Medium Access Control (MAC) protocols have been proposed in scientific literature, many of which are designed for specific application domains. However, for most of these MAC protocols, no multi-platform software implementation is available. In fact, the path from conceptual MAC protocol proposed in theoretical papers, towards an actual working implementation is rife with pitfalls. (i) A first problem is the timing bugs, frequently encountered in MAC implementations. (ii) Furthermore, once implemented, many MAC protocols are strongly optimized for specific hardware, thereby limiting the potential of software reuse or modifications. (iii) Finally, in real-life conditions, the performance of the MAC protocol varies strongly depending on the actual underlying radio chip. As a result, the same MAC protocol implementation acts differently per platform, resulting in unpredictable/asymmetrical behavior when multiple platforms are combined in the same network. This paper describes in detail the challenges related to multi-platform MAC development, and experimentally quantifies how the above issues impact the MAC protocol performance when running MAC protocols on multiple radio chips. Finally, an overall methodology is proposed to avoid the previously mentioned cross-platform compatibility issues. (C) 2018 Elsevier B.V. All rights reserved
Optimal Power Control in Decentralized Gaussian Multiple Access Channels
We consider the decentralized power optimization problem for Gaussian
fast-fading multiple access channel (MAC) so that the average sum-throughput is
maximized. In our MAC setup, each transmitter has access to only its own fading
coefficient or channel state information (CSI) while the receiver has full CSI
available at all instants. Unlike centralized MAC (full CSIT MAC) where the
optimal powers are known explicitly, the analytical solution for optimal
decentralized powers does not seem feasible. In this letter, we specialize
alternating-maximization (AM) method for numerically computing the optimal
powers and ergodic capacity of the decentralized MAC for general fading
statistics and average power constraints. For illustration, we apply our AM
method to compute the capacity of MAC channels with fading distributions such
as Rayleigh, Rician etc.Comment: 4 pages, 4 figures, accepted for publication to IEEE Communication
letter
PluralisMAC: a generic multi-MAC framework for heterogeneous, multiservice wireless networks, applied to smart containers
Developing energy-efficient MAC protocols for lightweight wireless systems has been a challenging task for decades because of the specific requirements of various applications and the varying environments in which wireless systems are deployed. Many MAC protocols for wireless networks have been proposed, often custom-made for a specific application. It is clear that one MAC does not fit all the requirements. So, how should a MAC layer deal with an application that has several modes (each with different requirements) or with the deployment of another application during the lifetime of the system? Especially in a mobile wireless system, like Smart Monitoring of Containers, we cannot know in advance the application state (empty container versus stuffed container). Dynamic switching between different energy-efficient MAC strategies is needed. Our architecture, called PluralisMAC, contains a generic multi-MAC framework and a generic neighbour monitoring and filtering framework. To validate the real-world feasibility of our architecture, we have implemented it in TinyOS and have done experiments on the TMote Sky nodes in the w-iLab.t testbed. Experimental results show that dynamic switching between MAC strategies is possible with minimal receive chain overhead, while meeting the various application requirements (reliability and low-energy consumption)
Adaptive Duty Cycling MAC Protocols Using Closed-Loop Control for Wireless Sensor Networks
The fundamental design goal of wireless sensor MAC protocols is to minimize unnecessary power consumption of the sensor nodes, because of its stringent resource constraints and ultra-power limitation. In existing MAC protocols in wireless sensor networks (WSNs), duty cycling, in which each node periodically cycles between the active and sleep states, has been introduced to reduce unnecessary energy consumption. Existing MAC schemes, however, use a fixed duty cycling regardless of multi-hop communication and traffic fluctuations. On the other hand, there is a tradeoff between energy efficiency and delay caused by duty cycling mechanism in multi-hop communication and existing MAC approaches only tend to improve energy efficiency with sacrificing data delivery delay. In this paper, we propose two different MAC schemes (ADS-MAC and ELA-MAC) using closed-loop control in order to achieve both energy savings and minimal delay in wireless sensor networks. The two proposed MAC schemes, which are synchronous and asynchronous approaches, respectively, utilize an adaptive timer and a successive preload frame with closed-loop control for adaptive duty cycling. As a result, the analysis and the simulation results show that our schemes outperform existing schemes in terms of energy efficiency and delivery delay
Structural basis of complement membrane attack complex formation
In response to complement activation, the membrane attack complex (MAC) assembles from fluid-phase proteins to form pores in lipid bilayers. MAC directly lyses pathogens by a ‘multi-hit’ mechanism; however, sublytic MAC pores on host cells activate signalling pathways. Previous studies have described the structures of individual MAC components and subcomplexes; however, the molecular details of its assembly and mechanism of action remain unresolved. Here we report the electron cryo-microscopy structure of human MAC at subnanometre resolution. Structural analyses define the stoichiometry of the complete pore and identify a network of interaction interfaces that determine its assembly mechanism. MAC adopts a ‘split-washer’ configuration, in contrast to the predicted closed ring observed for perforin and cholesterol-dependent cytolysins. Assembly precursors partially penetrate the lipid bilayer, resulting in an irregular β-barrel pore. Our results demonstrate how differences in symmetric and asymmetric components of the MAC underpin a molecular basis for pore formation and suggest a mechanism of action that extends beyond membrane penetration
- …
