4 research outputs found
A location-aware embedding technique for accurate landmark recognition
The current state of the research in landmark recognition highlights the good
accuracy which can be achieved by embedding techniques, such as Fisher vector
and VLAD. All these techniques do not exploit spatial information, i.e.
consider all the features and the corresponding descriptors without embedding
their location in the image. This paper presents a new variant of the
well-known VLAD (Vector of Locally Aggregated Descriptors) embedding technique
which accounts, at a certain degree, for the location of features. The driving
motivation comes from the observation that, usually, the most interesting part
of an image (e.g., the landmark to be recognized) is almost at the center of
the image, while the features at the borders are irrelevant features which do
no depend on the landmark. The proposed variant, called locVLAD (location-aware
VLAD), computes the mean of the two global descriptors: the VLAD executed on
the entire original image, and the one computed on a cropped image which
removes a certain percentage of the image borders. This simple variant shows an
accuracy greater than the existing state-of-the-art approach. Experiments are
conducted on two public datasets (ZuBuD and Holidays) which are used both for
training and testing. Morever a more balanced version of ZuBuD is proposed.Comment: 6 pages, 5 figures, ICDSC 201
Efficient Nearest Neighbors Search for Large-Scale Landmark Recognition
The problem of landmark recognition has achieved excellent results in
small-scale datasets. When dealing with large-scale retrieval, issues that were
irrelevant with small amount of data, quickly become fundamental for an
efficient retrieval phase. In particular, computational time needs to be kept
as low as possible, whilst the retrieval accuracy has to be preserved as much
as possible. In this paper we propose a novel multi-index hashing method called
Bag of Indexes (BoI) for Approximate Nearest Neighbors (ANN) search. It allows
to drastically reduce the query time and outperforms the accuracy results
compared to the state-of-the-art methods for large-scale landmark recognition.
It has been demonstrated that this family of algorithms can be applied on
different embedding techniques like VLAD and R-MAC obtaining excellent results
in very short times on different public datasets: Holidays+Flickr1M, Oxford105k
and Paris106k
An accurate retrieval through R-MAC+ descriptors for landmark recognition
The landmark recognition problem is far from being solved, but with the use
of features extracted from intermediate layers of Convolutional Neural Networks
(CNNs), excellent results have been obtained. In this work, we propose some
improvements on the creation of R-MAC descriptors in order to make the
newly-proposed R-MAC+ descriptors more representative than the previous ones.
However, the main contribution of this paper is a novel retrieval technique,
that exploits the fine representativeness of the MAC descriptors of the
database images. Using this descriptors called "db regions" during the
retrieval stage, the performance is greatly improved. The proposed method is
tested on different public datasets: Oxford5k, Paris6k and Holidays. It
outperforms the state-of-the- art results on Holidays and reached excellent
results on Oxford5k and Paris6k, overcame only by approaches based on
fine-tuning strategies
A Dense-Depth Representation for VLAD descriptors in Content-Based Image Retrieval
The recent advances brought by deep learning allowed to improve the
performance in image retrieval tasks. Through the many convolutional layers,
available in a Convolutional Neural Network (CNN), it is possible to obtain a
hierarchy of features from the evaluated image. At every step, the patches
extracted are smaller than the previous levels and more representative.
Following this idea, this paper introduces a new detector applied on the
feature maps extracted from pre-trained CNN. Specifically, this approach lets
to increase the number of features in order to increase the performance of the
aggregation algorithms like the most famous and used VLAD embedding. The
proposed approach is tested on different public datasets: Holidays, Oxford5k,
Paris6k and UKB
