328,375 research outputs found

    Quasirandom Load Balancing

    Full text link
    We propose a simple distributed algorithm for balancing indivisible tokens on graphs. The algorithm is completely deterministic, though it tries to imitate (and enhance) a random algorithm by keeping the accumulated rounding errors as small as possible. Our new algorithm surprisingly closely approximates the idealized process (where the tokens are divisible) on important network topologies. On d-dimensional torus graphs with n nodes it deviates from the idealized process only by an additive constant. In contrast to that, the randomized rounding approach of Friedrich and Sauerwald (2009) can deviate up to Omega(polylog(n)) and the deterministic algorithm of Rabani, Sinclair and Wanka (1998) has a deviation of Omega(n^{1/d}). This makes our quasirandom algorithm the first known algorithm for this setting which is optimal both in time and achieved smoothness. We further show that also on the hypercube our algorithm has a smaller deviation from the idealized process than the previous algorithms.Comment: 25 page

    Locally Optimal Load Balancing

    Full text link
    This work studies distributed algorithms for locally optimal load-balancing: We are given a graph of maximum degree Δ\Delta, and each node has up to LL units of load. The task is to distribute the load more evenly so that the loads of adjacent nodes differ by at most 11. If the graph is a path (Δ=2\Delta = 2), it is easy to solve the fractional version of the problem in O(L)O(L) communication rounds, independently of the number of nodes. We show that this is tight, and we show that it is possible to solve also the discrete version of the problem in O(L)O(L) rounds in paths. For the general case (Δ>2\Delta > 2), we show that fractional load balancing can be solved in poly(L,Δ)\operatorname{poly}(L,\Delta) rounds and discrete load balancing in f(L,Δ)f(L,\Delta) rounds for some function ff, independently of the number of nodes.Comment: 19 pages, 11 figure

    Binary PSOGSA for Load Balancing Task Scheduling in Cloud Environment

    Full text link
    In cloud environments, load balancing task scheduling is an important issue that directly affects resource utilization. Unquestionably, load balancing scheduling is a serious aspect that must be considered in the cloud research field due to the significant impact on both the back end and front end. Whenever an effective load balance has been achieved in the cloud, then good resource utilization will also be achieved. An effective load balance means distributing the submitted workload over cloud VMs in a balanced way, leading to high resource utilization and high user satisfaction. In this paper, we propose a load balancing algorithm, Binary Load Balancing-Hybrid Particle Swarm Optimization and Gravitational Search Algorithm (Bin-LB-PSOGSA), which is a bio-inspired load balancing scheduling algorithm that efficiently enables the scheduling process to improve load balance level on VMs. The proposed algorithm finds the best Task-to-Virtual machine mapping that is influenced by the length of submitted workload and VM processing speed. Results show that the proposed Bin-LB-PSOGSA achieves better VM load average than the pure Bin-LB-PSO and other benchmark algorithms in terms of load balance level

    A Soft Computing Approach to Dynamic Load Balancing in 3GPP LTE

    Get PDF
    A major objective of the 3GPP LTE standard is the provision of high-speed data services. These services must be guaranteed under varying radio propagation conditions, to stochastically distributed mobile users. A necessity for determining and regulating the traffic load of eNodeBs naturally ensues. Load balancing is a self-optimization operation of self-organizing networks (SON). It aims at ensuring an equitable distribution of users in the network. This translates into better user satisfaction and a more efficient use of network resources. Several methods for load balancing have been proposed. Most of the algorithms are based on hard (traditional) computing which does not utilize the tolerance for precision of load balancing. This paper proposes the use of soft computing, precisely adaptive Neuro-fuzzy inference system (ANFIS) model for dynamic QoS aware load balancing in 3GPP LTE. The use of ANFIS offers learning capability of neural network and knowledge representation of fuzzy logic for a load balancing solution that is cost effective and closer to human intuitio
    corecore