93,738 research outputs found

    Defining Petrophysical Units of the Palmer Deep Sites from Leg 178

    Get PDF
    Palmer Deep, on the inner continental shelf southwest of Anvers Island off the Antarctic Peninsula, is a glacially overdeepened basin consisting of three subbasins. Two sites, 1098 and 1099, were drilled in the Palmer Deep area. A high-resolution porosity curve has been calculated from density data and subsequently plotted against the shipboard lithologic logs. These new data correspond accurately to the lithologic logs, magnetic susceptibility, and gamma ray attenuation (GRA) density data and offer information on the heterogeneity of the sediments. Petrophysical groups have been generated to investigate interrelationships between different physical attributes. To develop these petrophysical groups, crossplots of the available physical properties data were performed. The results for the GRA density and magnetic susceptibility crossplots demonstrate distinct clusters. Plotting the magnetic susceptibility and GRA density data logs (divided into these new petrophysical groups) against lithology provided information to subdivide the lithologic unit(s) into a series of petrophysical units

    Self-stabilised fractality of sea-coasts through damped erosion

    Full text link
    Erosion of rocky coasts spontaneously creates irregular seashores. But the geometrical irregularity, in turn, damps the sea-waves, decreasing the average wave amplitude. There may then exist a mutual self-stabilisation of the waves amplitude together with the irregular morphology of the coast. A simple model of such stabilisation is studied. It leads, through a complex dynamics of the earth-sea interface, to the appearance of a stationary fractal seacoast with dimension close to 4/3. Fractal geometry plays here the role of a morphological attractor directly related to percolation geometry.Comment: 4 pages, 5 figure

    Evaluation of mineralogy per geological layers by Approximate Bayesian Computation

    Full text link
    We propose a new methodology to perform mineralogic inversion from wellbore logs based on a Bayesian linear regression model. Our method essentially relies on three steps. The first step makes use of Approximate Bayesian Computation (ABC) and selects from the Bayesian generator a set of candidates-volumes corresponding closely to the wellbore data responses. The second step gathers these candidates through a density-based clustering algorithm. A mineral scenario is assigned to each cluster through direct mineralogical inversion, and we provide a confidence estimate for each lithological hypothesis. The advantage of this approach is to explore all possible mineralogy hypotheses that match the wellbore data. This pipeline is tested on both synthetic and real datasets

    A Geomechanical Study of the Mississippian Boone Formation

    Get PDF
    The Boone Formation in northwest Arkansas is a chert-limestone sequence analogous to the subsurface Mississippi Lime reservoir in parts of Oklahoma and Kansas. It has low permeability and produces via horizontal drilling and hydraulic fracturing. The response to stimulation by fracturing is dependent on the quantity of chert in the area. Chert nodules and laterally extensive chert layers in the sequence are variable. Locally, cm- to dm-scale chert bedding is continuous and comprises up to 50% of the outcrop. Elsewhere, the chert is nodular and intermittent. Samples collected from representative outcrops spanning the thickness and aerial extent of the formation are being targeted to establish a geomechanical framework for the reservoir. Samples include end members of chert and limestone and interlayered limestone and chert facies with variable thicknesses and contact geometries. Each sample was cored, confined, and oriented perpendicular to bedding. Compressive strength testing of core plugs were performed to determine the stiffness of the rock, describe how each facies responds to loading and failure, determine how limestone rheology is influenced by the presence of chert, and characterize how rock properties influence the compressive strength of the sample. Rockwell Hardness testing was performed on the samples to understand the strength of the rock in an additional quantitative way. The compressive strength of the samples and the Rockwell Hardness values of the samples were compared with each other and with the inherent properties of the rock (e.g. lithology, natural fractures, contact types, and facies) to understand and assess correlations and trends in an effort to understand the geomechanics of the Boone Formation

    Profiles of Problematic Soils and Spatial Distribution: Implication on Foundation Construction in Parts of Kosofe Lagos, Southwestern Nigeria.

    Get PDF
    Geotechnical data were complemented with geophysical investigation and employed to delineate problematic soils in parts of Kosofe Lagos, Southwestern Nigeria. The study area was chosen because of known issues regarding cracks in buildings and differential settlement of infrastructures founded on soils in the area. The aim is to generate profiles and maps of the spatial distribution of the subsurface soils to aid in foundation planning. Forty eight borehole logs and nine Vertical Electrical Soundings were compiled to delineate the different subsurface lithology which include peat, clay and sand. The results showed that the peat layer has maximum thickness of about 18.25 m but absent in some boreholes. This is underlain by clay unit with thickness ranging between 2.50-28.50 m. Sand unit constitute the third layer delineated with maximum thickness of 14 m. There is a general thickening of peat soils in the northern parts, especially around the streams in the area, which is instructive on the role of stream in the formation of the peat. The clay on the other hand is thickest around the northeastern and southeastern parts. The soil profiles generated reveal that the area is underlain by thick peat and clay having significant lateral, vertical variation and rapidly changing lithological facie over short distances. The extensive occurrence of these poor engineering soils calls for adequate engineering precaution in designs of building foundation

    Scale-dependence of lithological control on topography: Bedrock channel geometry and catchment morphometry in western Scotland

    Get PDF
    We propose that a scale-dependent topographic signature of erodibility arises due to fluvial and glacial erosion acting on different parts of the landscape at different times. For 14 catchments in western Scotland, we define three levels of substrate erodibility in order of decreasing resistance: quartzite rocks, nonquartzite rocks, and zones of fault-related fracture. Then, using digital topographic and planimetric data coupled with field measurements, we identify regression based scaling relationships between substrate erodibility and morphometric parameters at two spatial scales. Catchment-scale morphometry shows a weak to variable relationship with substrate metrics overall. Erodibility can be inferred from catchment steepness indices (i.e., channel steepness index and relief ratio), but the existence of multiple exceptions could confound a more general application of this approach. Nonetheless, major valley troughs trace fault zones and nonquartzite rocks, leaving much of the higher and steeper ground formed in quartzite. At the reach scale, bedrock channel slope is far more sensitive to substrate erodibility than is channel width. Quartzite outcrops steepen bedrock channels by a factor of 1.5–6.0, and in terms of unit stream power, channels increase their erosional capacity by a factor of 2.7–3.5. Yet only 4%–13% of this increase is due to channel narrowing. Based on a large data set of bedrock channel width (n = 5825) from four rivers, we find that width scales with drainage area (in m<sup>2</sup>) as W = 0.01A<sup>0.28</sup>. Our results are consistent with the view that width-area scaling is similar in all single-thread rivers subject to transport-limited conditions but that for increasingly sediment supply limited settings, erosional thresholds at the channel boundary are the key determinants of bedrock channel width

    Fractality of eroded coastlines of correlated landscapes

    Full text link
    Using numerical simulations of a simple sea-coast mechanical erosion model, we investigate the effect of spatial long-range correlations in the lithology of coastal landscapes on the fractal behavior of the corresponding coastlines. In the model, the resistance of a coast section to erosion depends on the local lithology configuration as well as on the number of neighboring sea sides. For weak sea forces, the sea is trapped by the coastline and the eroding process stops after some time. For strong sea forces erosion is perpetual. The transition between these two regimes takes place at a critical sea force, characterized by a fractal coastline front. For uncorrelated landscapes, we obtain, at the critical value, a fractal dimension D=1.33, which is consistent with the dimension of the accessible external perimeter of the spanning cluster in two-dimensional percolation. For sea forces above the critical value, our results indicate that the coastline is self-affine and belongs to the Kardar-Parisi-Zhang universality class. In the case of landscapes generated with power-law spatial long-range correlations, the coastline fractal dimension changes continuously with the Hurst exponent H, decreasing from D=1.34 to 1.04, for H=0 and 1, respectively. This nonuniversal behavior is compatible with the multitude of fractal dimensions found for real coastlines

    Ultramafic xenoliths from the Bearpaw Mountains, Montana, USA: evidence for multiple metasomatic events in the lithospheric mantle beneath the Wyoming craton

    Get PDF
    Ultramafic xenoliths in Eocene minettes of the Bearpaw Mountains volcanic field (Montana, USA), derived from the lower lithosphere of the Wyoming craton, can be divided based on textural criteria into tectonite and cumulate groups. The tectonites consist of strongly depleted spinel lherzolites, harzburgites and dunites. Although their mineralogical compositions are generally similar to those of spinel peridotites in off-craton settings, some contain pyroxenes and spinels that have unusually low Al2O3 contents more akin to those found in cratonic spinel peridotites. Furthermore, the tectonite peridotites have whole-rock major element compositions that tend to be significantly more depleted than non-cratonic mantle spinel peridotites (high MgO, low CaO, Al2O3 and TiO2) and resemble those of cratonic mantle. These compositions could have been generated by up to 30% partial melting of an undepleted mantle source. Petrographic evidence suggests that the mantle beneath the Wyoming craton was re-enriched in three ways: (1) by silicate melts that formed mica websterite and clinopyroxenite veins; (2) by growth of phlogopite from K-rich hydrous fluids; (3) by interaction with aqueous fluids to form orthopyroxene porphyroblasts and orthopyroxenite veins. In contrast to their depleted major element compositions, the tectonite peridotites are mostly light rare earth element (LREE)-enriched and show enrichment in fluid-mobile elements such as Cs, Rb, U and Pb on mantle-normalized diagrams. Lack of enrichment in high field strength elements (HFSE; e.g. Nb, Ta, Zr and Hf) suggests that the tectonite peridotites have been metasomatized by a subduction-related fluid. Clinopyroxenes from the tectonite peridotites have distinct U-shaped REE patterns with strong LREE enrichment. They have 143Nd/144Nd values that range from 0·5121 (close to the host minette values) to 0·5107, similar to those of xenoliths from the nearby Highwood Mountains. Foliated mica websterites also have low 143Nd/144Nd values (0·5113) and extremely high 87Sr/86Sr ratios in their constituent phlogopite, indicating an ancient (probably mid-Proterozoic) enrichment. This enriched mantle lithosphere later contributed to the formation of the high-K Eocene host magmas. The cumulate group ranges from clinopyroxene-rich mica peridotites (including abundant mica wehrlites) to mica clinopyroxenites. Most contain >30% phlogopite. Their mineral compositions are similar to those of phenocrysts in the host minettes. Their whole-rock compositions are generally poorer in MgO but richer in incompatible trace elements than those of the tectonite peridotites. Whole-rock trace element patterns are enriched in large ion lithophile elements (LILE; Rb, Cs, U and Pb) and depleted in HFSE (Nb, Ta Zr and Hf) as in the host minettes, and their Sr–Nd isotopic compositions are also identical to those of the minettes. Their clinopyroxenes are LREE-enriched and formed in equilibrium with a LREE-enriched melt closely resembling the minettes. The cumulates therefore represent a much younger magmatic event, related to crystallization at mantle depths of minette magmas in Eocene times, that caused further metasomatic enrichment of the lithosphere
    corecore